

Stress and the Cardiovascular System: Navigating the Intersection

Ahmed Tawakol, MD Director, Nuclear Cardiology Co-Director, Cardiovascular Imaging Research Center Associate Professor of Medicine Massachusetts General Hospital Harvard Medical School

Corrigan Minehan Heart Center

Disclosures

- Related to the content of this presentation:
 - None
- Unrelated to the presentation
 - Lung Biotechnology: Research grant
 - Actelion: minor consulting
 - DalCor: minor consulting

Psychosocial stress and Heart Disease

Psychosocial stress:

- Attributable CVD risk is on par with that for smoking, elevated lipids, hypertension, and diabetes.
- Yet relatively little had been known about the mechanisms that translate stress into CVD events.

The INTERHEART Study

Rosengren et al Lancet 2004

Mechanisms Linking Stress to Heart Disease

- Stress may affect behaviors and factors that increase heart disease risk:
 - Smoking
 - Physical inactivity
 - Overeating
 - HTN
 - Diabetes
 - Adiposity
- These factors do not explain the observed risk

Chronic Stress Promotes Atherosclerotic Inflammation in Mice

Dutta et al Nature 2012, Heidt et al Nat Med 2014, Nahrendorf & Swirski, Circ Research 2015

Perceived Stress Scale-10

The questions in this scale ask you about your feelings and thoughts during the last month. In each case, you will be asked to indicate by circling how often you felt or thought a certain way.	Never	Almost Never	Sometimes	Fairly Often	Very Often
1. In the past month, how often have you been upset because of something that happened unexpectedly?	0	1	2	3	4
2. In the past month, how often have you felt unable to control the important things in your life?	0	1	2	3	4
3. In the past month, how often have you felt nervous or stressed?	0	1	2	3	4
4. In the past month, how often have you felt confident about your ability to handle personal problems?	0	1	2	3	4
5. In the past month, how often have you felt that things were going your way?	0	1	2	3	4
6. In the past month, how often have you found that you could not cope with all the things you had to do?	0	1	2	3	4
7. In the past month, how often have you been able to control irritations in your life?	0	1	2	3	4
8. In the past month, how often have you felt that you were on top of things?	0	1	2	3	4
9. In the past month, how often have you been angry because of things that happened that were outside of your control?	0	1	2	3	4
10. In the past month, how often have you felt that difficulties were piling up so high that you could not overcome them?	0	1	2	3	4

The Brain's Stress-Related Neural Network : Controlling the Physiologic Response to Stressors

Blair et al. NEJM Dec 2014

Imaging the Neurobiology of Stress

FDG PET

Functional MRI

<u>Neural Metabolism</u> High amygdalar activity (AA_C) relative to counter-regulatory cortical activity

Neural Activation and Connectivity

- Heightened activation in response to stressful stimuli
- Reduced connectivity to counter-regulatory tissue

Structural MRI

Tissue Volumes

- Amygdalar volume loss
- Due to loss of counterregulatory connections

Study of How Chronic Stress Leads to CVD in Humans

- Sought to test the hypothesis that higher stress neural activity associates with greater risk of CVD
- Employed multi-system imaging w FDG PET/CT and PET/MR to quantify:
 - Amygdalar/Cortical Activity (AA_c)
 - as ratio of amygdalar activity : counter-regulatory cortical activity
 - Leukopoietic Activity
 - bone marrow activity
 - Arterial inflammation
 - Aortic activity
- 5-year follow-up for CVD events (med record rev)

Study Cohort

Amygdalar : Cortical Activity (A_cA) vs Subsequent CVD Events

Tawakol et al Lancet 2017

Multi-group support for *neural-immune-arterial* mechanisms of disease

(out of 227 studies mentioning Amygdala and Cardiovascular Disease since January 2017)

Amygdalar-cortical interactions predict atherosclerosis

Stress-Related Pathophysiology

What about Chronic Stressors and CVD?

- Two well-studied stressors:
 - Low socioeconomic status (e.g. low income and high crime)
 - Chronic noise

- Well-known that both factors associate with :
 - CVD
 - Stress

- Hypothesis:
 - stress-associated pathways partially mediate the link between Noise/SES and CVD

Socioeconomic Status vs CVD: Involvement of Stress-Associated Mechanisms

Tawakol ... Armstrong JACC 2019

Noise-Brain-CVD

Neurobiological Resilience

Dar el al Circ Imaging 2020

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Acute Stress and CVD

Corrigan Minehan Heart Center

Acute Stress and CVD: Earthquake

Leore, Poole & Kloner NEJM 1996

Acute Stress and CVD: World Cup

CVD Events Surge after Elections

PNAS

RESEARCH ARTICLE | BIOLOGICAL SCIENCES | FREE ACCESS

f 🍠 in 🖂 🪨

Sociopolitical stress and acute cardiovascular disease hospitalizations around the 2016 presidential election

Matthew T. Mefford, Murray A. Mittleman, Bonnie H. Li, 🔢 , and David R. Williams 🖾 Authors Info & Affiliations

October 12, 2020 117 (43) 27054-27058 https://doi.org/10.1073/pnas.2012096117

JAMA Network Open

Association of the 2020 US Presidential Election With Hospitalizations for Acute Cardiovascular Conditions

Matthew T. Mefford, PhD¹; Jamal S. Rana, MD, PhD^{2,3}; Kristi Reynolds, PhD, MPH^{1,4}; Omesh Ranasinghe, MPH¹; Murray A. Mittleman, MD, DrPH^{5,6}; Jennifer Y. Liu, MPH³; Lei Qian, PhD¹; Hui Zhou, PhD¹; Teresa N. Harrison, SM¹; Alan C. Geller, MPH⁷; Richard P. Sloan, PhD⁸; Elizabeth Mostofsky, ScD⁵; David R. Williams, PhD^{7,9}; Stephen Sidney, MD³

> Author Affiliations | Article Information

JAMA Netw Open. 2022;5(4):e228031. doi:10.1001/jamanetworkopen.2022.8031

Figure 1. Hospitalization for Acute Cardiovascular Disease (CVD) Events per 100 000 Person-Years in the Month Preceding and After the 2020 Presidential Election

AA_c vs. Risk of Takotsubo Syndrome (TTS)

- 104 Individuals who underwent FDG-clinical PET/CT
- 41 <u>subsequently</u> developed TTS (med 2.5 years after imaging)
- 63 matched controls.

AA_c vs. Risk of Takotsubo Syndrome (TTS)

- 104 Individuals who underwent FDG-clinical PET/CT
- 41 <u>subsequently</u> developed TTS (med 2.5 years after imaging)
- 63 matched controls.

Lower AA_c More Neurbiologically Resilient

Lower susceptibility of neural centers to activation by stressful events

Higher AA_c Less Neurbiologically Resilient

Higher susceptibility of neural centers to activation by stressful events

Less neural activation and lesser systemic response to stress

Fewer Physiologic consequences of stress

Benign / Resilient Course Triggered neural activation and exaggerated systemic response to stress

Sympathetic system surge Inflammation Hypercoagulability

ACS Sudden Arrhythmia Death

Takotsubo

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Impact of Interventions on Stress-Associated Neural Activity

Corrigan Minehan Heart Center

29

Stress Reduction may Impart CVD Benefits

226 Subjects with recent CVD events Standard Cardiac Rehab (exercise) vs Enhanced Cardiac Rehab (Exercise + SR)

Evaluation of Lifestyle Factors : MGB Biobank Heart-Mind Study

Light/Mod Alcohol vs MACE

	Covariable Themes	Covariables	10-year MACE	P-Value	
Light/moderate vs Low Alcohol consumption	+ CVD risk factors (primary analysis)	Age, sex, HTN, DM, HLD, smoking	0.81 (0.75-0.88)	P<0.001	
	+ Health behaviors	Exercise, Sleep disorders	0.83 (0.77-0.90)	P<0.001	
	+ Socioeconomic factors	Employment, Education, income	0.84 (0.77-0.91)	P<0.001	
	+ Psychological factors	Depression, Anxiety	0.84 (0.77-0.91)	P<0.001	
	+ Medical comorbidities	Charlson index	0.87 (0.80-0.94)	P<0.001	

			MACE Component	*HR (95% CI); <i>P</i> Value
All MACE			All MACE	0.78 (0.71-0.86); <i>P</i> < 0.001
Coronary MACE			Coronary MACE (MI + UA + Revasc)	0.78 (0.67-0.91); P = 0.001
ACS MACE			ACS MACE (MI + UA)	0.78 (0.67-0.92); P = 0.002
HF			HF (Heart Failure)	0.79 (0.70-0.88); P < 0.001
PVD			PVD (Severe PVD + PVD Revasc)	0.72 (0.55-0.93); P = 0.013
Stroke			Stroke (Ischemic + Hemo + TIA)	0.74 (0.66-0.84); <i>P</i> < 0.001
All Cancers		H	[†] All Cancers	1.23 (1.14-1.33); <i>P</i> < 0.001
0.	.5 0.75 1	1.25 1.	5	
	HR (Log Scale)			

Light/Mod Alcohol vs. **Stress-Associated Neural Activity**

Alcohol vs Stress-Associated **Neural Activity**

Mezue et al AHA 2021

Light/Mod Alcohol vs MACE

Greater effect in individuals with anxiety

B Population (n)	Alcohol Intake	10-Year MACE HR* 0.5 0.75 1	HR (95% CI)	<i>P</i> Value for Difference	<i>P</i> Value for Interaction	
Individuals Without Pre-Existing Anxiety	none/minimal		 0.78 (0.73-0.83)	< 0.001		
(29,651) Individuals With	none/minimal		0.60	< 0.001	0.003‡	
Pre-Existing Anxiety (4,067)	light/moderate		 (0.50-0.72) < 0.001			

~double the reduction in MACE risk

Mezue et al JACC 2023

- Mod alcohol associates with decreased CVD risk
 - in part by attenuating stress-related pathways

No safe levels of alcohol

 Need therapies that reduce stress-associated neural mechanisms <u>without</u> the side effects of alcohol.

Relationship between Exercise and Stress-Associated Neural Activity

Physical Activity vs Cardiac Events: Greater Impact in those w Depression

Pre-existing	Physical Activity recommendations^ - (MET-min/wk)	Coronary MACE HR †			Incidence	HR	p for	p for
(n)		0.5 0	·75	1 1.25	(percentage)	[95% CI]	difference	interaction¶
Absent*	<	1') 0/		605 (4·9%)	1	0.012	
(n=45,065)	2	-12			994 (3·2%)	0.880 [0·794, 0·975]		0.046
Present	<	_3:	3%		129 (7·0%)	1	0.003	0.040
(n=5,042)	2				106 (3·9%)	0·673 [0·519, 0·873]		

Key Points

- Stress:
 - a common, important risk factor for CVD
 - attributable risk on par with HTN, smoking, DM
- Associates with:
 - higher stress-associated neural network activity
 - leukopoietic activity & systemic inflammation
 - arterial inflammation and noncalcified plaque
 - CVD events
- Its impact might be modifiable
- Large trials are needed in order to:
 - Prove causation and
 - Determine efficacy of interventions

For individuals with high atherosclerotic risks and high stress, reasonable to recommend :

- Stress reduction approaches
- Exercise
- Healthy sleep

Acknowledgement

•

•

•

Lab Team:

- S Abohashem
- A Alhamam
- M Aldosoky
- A Cardeiro
- C Gharios
- S Grewal
- G Goudot
- K Mezue
- A Newhouse
- M Osborne
- A Radfar
- R Rosovsky
- H Zureigat

40

MGB Collaborators: •

- C Catana
- K Choi
- JW Denninger,
- G El Fakhiri
- G Fricchione
 - SK Grinspoon
- J Huffman
 - F Jaffer
 - J Lo
 - M Lu
 - M Nahrendorf
 - T Neilan

- R Pitman
- PM Ridker
- H Sabet
- L Shin,
- D Solomon
- J Smoller
- D Sosnovik
- J Wasfy

<u>Outside</u>

Collaborators: •

- J Bathon
- R Beanlands
- J Bucerius
- ZA Fayad

- F Giammarile
- J Giles
- M Hacker
- P Hsue
 - D Paez

S Rajagopalan

Funding:

- IAEA
- NHLBI
- NIAID
- NIAMS
- Osher/Harvard
- Lung Biotechnology

