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Epigenetic mechanisms constitute a layer of genome regulation beyond the DNA sequence

/ 1D: Genome sequence
@ Protein-coding genes

@ Regulatory elements

“2D”: Epigenetic marks
@ DNA methylation

@ Histone modifications

3D: Nuclear organization

@ Chromatin domains

K @ Promoter-enhancer links
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The epigenetic landscape visualizes cell states, their developmental past & future potential

Differentiation blocks and aberrations in cancer

)

Waddington 1957

(

Epigenetic landscape

«|Blju9}0d,,

Gene regulatory network underlying the landscape

Epigenetic memory of cell state trajectories
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Goal: A quantitative, disease-relevant & predictive model of the epigenetic landscape

A) Genome B) Gene expression C) State space (2D)
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Huang (2011) BioEssays
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Epigenetic regulation by DNA methylation is deeply conserved in vertebrate evolution

DNA methylation mapped (by RRBS) and analyzed across 580 animal species & 2443 tissue samples

@ DNA methylation and DNA sequence are closely linked (DNA trimers predict local DNA methylation)
@ We can predict DNA methylation profiles across species, for example octopus to elephant @ (ROC-AUC 0.76)

@ Cancer risk and Peto’s paradox: DNA methylation may help protect long-lived birds & mammals against cancer
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Presentation outline

1. Developmental history and epigenetic cell states in immune diseases

Immune cells “remember” their differentiation history and re-use
regulatory processes of normal development in immune diseases

2. Epigenetic potential for rapid immune gene activation

Hematopoietic and non-hematopoietic structural cells implement an
epigenetic potential for rapid immune gene activation upon challenge

3. Epigenetic cell states connecting the past and future of cancer cells

Epigenetic and transcription-regulatory profiles identify cancer cells-of-
origin, detect disease progression, and prioritize potential therapies

4. Rational programming of human cells for biomedical applications

Interpretable deep learning, CRISPR single-cell sequencing, and
patient-derived organoids facilitate mechanistic biology at scale
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Reconstructing cellular differentiation hierarchies from epigenetic data

An early proof-of-concept focusing on the human blood lineage 1. Sigecell Bisufte Sigle-stand Livary  NextGeneraton Sequercin
orting onversion reparation —
1. We developed a scalable method for single-cell DNA methylation profiling @_, % . DNAMethyiation Calling
- Cell 1 alblibumliithisnd
Reaction Cell 2 puuliliasiibiibibian d

2. Applied it to the epigenomes of FACS-enriched stem/progenitor cells
scWGBS: Farlik, Sheffield et al. (2015) Cell Reports

(http://doi.org/10.1016/j.celrep.2015.02.001)

3. Performed bioinformatic lineage reconstruction using machine learning

2 Hematopoietic stem cell differentiation 3
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An unexpected epigenetic landscape in a rare childhood disease

Langerhans cell histiocytosis: A cancer? An autoimmune disease?
@ Rare pediatric disease: <1 case per 100,000, most patients survive

@ Pathology: Accumulation of CD1a+ CD207+ cells in various tissues

@ Hybrid position between a cancer (BRAF V600OE) and an autoimmune
disease (inflammation, no genetic evolution)

Single-cell RNA-seq, ATAC-seq unravels developmental hierarchy in situ: Collaboration:
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Single-cell and spatial profiling for clinical trials monitoring :S%IL
lymph nodes

Sarcoidosis: Granuloma formation of unknown cause
@ 5 to 40 cases per 100,000, frequency highly variable by genetic ancestry
@ Affecting skin, lung, and other organs, <5% mortality, substantial morbidity

@ Few treatment options - but initial data that mTOR is critical for granuloma
formation in a mouse model of sarcoidosis (Linke 2017 Nature Immunology)

N-of-1 clinical trial for mTOR inhibition
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Results of single-cell and spatial
profiling at baseline of the trial
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Conclusions

@ Pathogenic macrophages and
fibroblasts support granulomas

@ Granulomas exploit elements of
lymphoid organ development
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Presentation outline

1. Developmental history and epigenetic cell states in immune diseases

Immune cells “remember” their differentiation history and re-use
regulatory processes of normal development in immune diseases

2. Epigenetic potential for rapid immune gene activation

Hematopoietic and non-hematopoietic structural cells implement an
epigenetic potential for rapid immune gene activation upon challenge

3. Epigenetic cell states connecting the past and future of cancer cells

Epigenetic and transcription-regulatory profiles identify cancer cells-of-
origin, detect disease progression, and prioritize potential therapies

4. Rational programming of human cells for biomedical applications

Interpretable deep learning, CRISPR single-cell sequencing, and
patient-derived organoids facilitate mechanistic biology at scale
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Epigenetic states capture the cells’ developmental past - can they predict their future?

Structural cells: Giving shape to our body, contributing to host immunity?

J,

2
‘ e@,f@ @ We performed epigenome & transcriptome profiling of “structural cells”
<’%ySmall int.

@ Epithelium, endothelium, fibroblasts were analyzed across 12 organs

@ We found widespread activity of immune genes in these non-immune cells
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An epigenetic potential for immune gene activation in structural cells

Integrative analysis of epigenome (ATAC-seq) and transcriptome (RNA-seq) data
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Systemic viral infection activates the epigenetic immune potential of structural cells

Validating the epigenetic potential of structural cells

@ We challenged mice with a systemic infection model
(LCMV, collaboration with Andreas Bergthaler at CeMM)

@ Preferential activation of “poised” immune genes
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How to immune cells retain their epigenetically primed state?

Hypothesis: Baseline immune signaling keeps target genes in open chromatin state

@ We tested this hypothesis with a focus on JAK-STAT signhaling in homeostasis

@ We performed RNA-seq & ATAC-seq for T cells & macrophages from 12 mutant mouse models

Homeostatic model (in vivo)
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STAT knockout mice show reduced immune gene activity even at homeostasis

MDS dimension 2

Mutations in JAK-STAT proteins have characteristic

effects on the immune cell transcriptome
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Baseline JAK-STAT signhaling at homeostasis is driven by the tissue environment

Ex vivo culture deprives
immune cells of
baseline stimulation
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How does epigenetic priming affect immune responses in humans?

BCG stimulates both innate & adaptive immunity, allowing us to compare these effects

@ 323 individuals vaccinated with BCG, three time points, clinical study led by Mihai Netea (Nijmegen)

@ We performed ATAC-seq on the entire cohort and analyzed the data with various immune readouts

@ Time series character of the dataset enables investigation of baseline versus BCG effect
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How does epigenetic priming affect immune responses in humans?

BCG-induced

chromatin remodeling

We observe responders vs. hon-responders for
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Presentation outline

1. Developmental history and epigenetic cell states in immune diseases

Immune cells “remember” their differentiation history and re-use
regulatory processes of normal development in immune diseases

2. Epigenetic potential for rapid immune gene activation

Hematopoietic and non-hematopoietic structural cells implement an
epigenetic potential for rapid immune gene activation upon challenge

3. Epigenetic cell states connecting the past and future of cancer cells

Epigenetic and transcription-regulatory profiles identify cancer cells-of-
origin, detect disease progression, and prioritize potential therapies

4. Rational programming of human cells for biomedical applications

Interpretable deep learning, CRISPR single-cell sequencing, and
patient-derived organoids facilitate mechanistic biology at scale
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Using epigenetic information to guide personalized medicine

Genome : - Transcriptome
profiling Epigenome profiling profiling
Stable Cell type-specific ~ Fluctuating™™
DNA DNA methylation Chromatin RNA

Clinical utility of epigenetic information
@ Disease stratification for precision medicine
@ Monitoring epigenetic drug response
@ Detecting footprints of environmental exposure
@ Inferring tissue type from DNA

@ Quantifying immune cell infiltration

CelMM @ MEDICAL UNIVERSITY Page 20 of 38




Example 1: Bioinformatics enables epigenetic cancer diagnostics

Cancers of unknown primary site (CUPs) g
@ Metastatic cancers of unknown primary site are hard to treat

@ DNA methylation mapping established in a reference set of cell
type signatures

@ Bioinformatic analysis of DNA methylation in CUPs readily ‘
identified the tissue of origin "

Colon

Lung Bioinformatic approach

Breast 1. Training and cross validation
Bladder of an elastic net classifier

Prostate 2. Application to an independent
Ovary test set of tumor samples

Endometrium 3. Validation based on clinical

Esophagus diagnostics data
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Example 1: The EPICUP biomarker for tissue-of-origin in cancer

Five years later - a validated biomarker

@ Public-private partnership by Manel Esteller and Ferrer Biotech (Barcelona)

@ Retrospective validation study done on 10,000 clinical samples

@ Biomarker CE-certified with 97% sensitivity and >99% specificity

Validated Accuracy

Necropsy 100%
Further appearance of primary 87%
tumour

Light microscopy evaluation 96%

IHC with tissue-specific markers 100%

Epigenetic profiling to classify cancer of unknown primary:
a multicentre, retrospective analysis

Sebastian Moran, Anna Martinez-Cardds, Sergi Sayols, Eva Musulén, Carme Balafid, Anna Estival-Gonzalez, Catia Moutinho, Holger Heyn,
Angel Diaz-Lagares, Manuel Castro de Moura, Giulia M Stella, Paolo M Comoglio, Maria Ruiz-Mird, Xavier Matias-Guiu, Roberto Pazo-Cid,
Antonio Anton, Rafael Lopez-Lopez, Gemma Soler, Federico Longo, Isabel Guerra, Sara Fernandez, Yassen Assenov, Christoph Plass,

Rafael Morales, Joan Carles, David Bowtell, Linda Mileshkin, Daniela Sia, Richard Tothill, Josep Tabernero, Josep M Llovet, Manel Esteller

Overall survival (%)

100
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Example 2: Dissecting epigenetic heterogeneity in Ewing sarcoma Collaboration:

Ewing sarcoma: Aggressive childhood cancer with unexplained heterogeneity StAnng
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@ Driven by a single genetic event (EWS-ETS gene fusion), few other genetic defects
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Example 3: Glioblastoma progression based on a national registry

@ Cohort: 112 primary, IDH wildtype glioblastoma patients, each with 2-4 time points

Approach:

@ Selected from the Austrian Brain Tumor Registry (FFPE tumor blocks)
@ DNA methylation profiling using FFPE-optimized RRBS protocol in 499 tumor samples
@ Multimodal data integration by statistical methods and machine learning
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Example 4: Time series analysis of the response to targeted leukemia therapy

% CLL cells

Immunophenotyping ATAC-seq
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Model / Interpretation

@ Conserved response, heterogeneous speed

@ NF-kB binding down = lineage TFs down =

erosion of CLL cell identity =» quiescence

CelVM @%‘?3%%%’““’““” Rendeiro, Krausgruber et al. (2020) Nature Communications (https://nature.com/articles/s41467-019-14081-6)
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Example 4: Drug-response profiling & epigenetics prioritize drug combinations

Identifying drugs to enhance ibrutinib’s anti-CLL effect Collaboration:
@ MEDICAL UNIVERSITY
: . o OF VIENNA
Epigenome profiling Informed prioritization
Combined analysis g’ ’
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Integration of epigenome profiling and single-cell chemosensitivity
profiling prioritizes drug sensitivities for combination therapy

CelVVl  (@)senistagneesry Schmidl, Viadimer, Rendeiro et al. (2019) Nature Chemical Biology (http://dx.doi.org/10.1038/s41589-018-0205-2) Page 26 of 38




Vision: Patient-specific ‘route planning’ on disease landscapes

Toward adaptive therapy in leukemia (CLL) HIV therapy as proof-of-principle

dB/NIN

4 |
& L

PERSPECTIVES

OFINION

Managing drug resistance in cancer:
lessons from HIV therapy

Christoph Bock and Thomas Lengauer

Abstract | Drug resistance is a commaon cause of treatment failure for HIV infection

q Goa |: Delay d isease progreSSion u ntll the and cancer. The high muLalLian rate of HIV leads?ogenetichgtemgeneity amang
. . rrural populations and pmv_ldnlzs the seed from which drug—resuslgnt elones emerge
patle n-t d IeS for u n related reaso nS in response to therapy. Similarly, most cancers are characterized by extensive

genetic, epigenetic, transcriptional and cellular diversity, and drug-resistant
eancer cells outgrow their non-resistant peers in a process of somatic evelution.
Patient-specific combination of antiviral drugs has emerged as a powerful

. i i approach for treating drug-resistant HIV infection, using genotype-based

q CO n Ce pt' M a n I p u I ate the eV0| Utlo n a ry predictions te identify the best matched combination therapy among several
H £ hundred possible combinations of HIV drugs. In this Opinion article, we argue that

dyn a m ICS O n th e Ce | |S fltn eSS Ia n dsca pe HIV therapy provides a ‘blueprint’ for designing and validating patient-specific

eombination therapies in cancer.

CelMI @%‘Fﬁx‘?{ﬁﬁhﬁmmm Bock & Lengauer (2012) Nature Reviews Cancer (http://dx.doi.org/10.1038/nrc3297) Page 27 of 38




Detecting epigenetic footprints of Ewing sarcoma in cell-free DNA

A whole genome sequencing based liquid biopsy assay that does not depend on genetic alterations

@ Many childhood cancers have few genetic alterations, making liquid biology analysis challenging

@ Fragmentation patterns of tumor-derived DNA in the blood reflect tumor-specific epigenetic signatures
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Peneder et al. (2021) Nature Communications (https://nature.com/articles/s41467-021-23445-w)
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Presentation outline

1. Developmental history and epigenetic cell states in immune diseases

Immune cells “remember” their differentiation history and re-use
regulatory processes of normal development in immune diseases

2. Epigenetic potential for rapid immune gene activation

Hematopoietic and non-hematopoietic structural cells implement an
epigenetic potential for rapid immune gene activation upon challenge

3. Epigenetic cell states connecting the past and future of cancer cells

Epigenetic and transcription-regulatory profiles identify cancer cells-of- Ny AU
origin, detect disease progression, and prioritize potential therapies

4. Rational programming of human cells for biomedical applications

Interpretable deep learning, CRISPR single-cell sequencing, and
patient-derived organoids facilitate mechanistic biology at scale

CelMM @ MEDICAL UNIVERSITY Page 29 of 38




Our goal: Programming cells for biological discovery and therapeutic applications
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DNA
Human
GENOME 4 l ol

Synthetic
Biology

Lead technology: Massive-

scale DNA synthesis

Precision
Medicine

Epigenetic
Cell State

Cost (log-scale)

Lead technology: Next
Generation Sequencing

Machine
Learning

“LEARN”
IRAIGDEN
Lead technology: </ 21y i @ «<air
Interpretable S A e o
machine learning “*lAsl Al el
S .'@»..'}i.O@....

MEDICAL UNIVERSITY

CeVMl  (@)uenisess Research laboratory: https://bocklab.org Twitter: https://twitter.com/BockLab Page 30 of 38




High-content CRISPR screening

Pooled CRISPR screen Arrayed CRISPR screen
Model
Cell lines, primary cells, organoids, = Cas9-expressing Cas9-expressing cells
model organisms (in vivo screens) cells in bulk in separate wells _— "
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e \\
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prime editing '@: '@: ‘ 18 C:rliir . .'@: .E'[?: @@ ®\
oo ol 'ﬁg\ bviee B A B @;@,ff
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(e.g. cytotoxic drug)
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CelVMM @“ﬁnm"m’m Bock et al. (2022) High-content CRISPR Screening. Nature Reviews Disease Primers (http://dx.doi.org/10.1038/s43586-021-00093-4) Page 31 of 38
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CROP-seq enables CRISPR screening with very complex phenotypes

Single cells infected
with lentiviral library

CROP-seq
(1-step cloning)
Pol IlI Pol II
S i = ey
sgRNA sgRNA

PERTURB-seq, CRISP-seq
(massively arrayed cloning)
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Guide barcode

Single-cell
RNA-seq

Related methods

Genes
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Cells

Gene

readout

readout
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Formerly: Aelian Biotechnology

Perturb-seq - A. Regev & J. Weissman labs (Dixit et al, 2016; Adamson et al, 2016)

CRISP-seq - I. Amit lab (Jaitin et al, 2016)

Mosaic-seq - G. Hon lab (Xie et al, 2017)

expression

Perturbation

“CROP-seq as a service”
for biotech/pharma (Col)

MEDICAL UNIVERSITY
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Paul Datlinger et al. (2017) Nature Methods (http://dx.doi.org/10.1038/nmeth.4177)
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‘Hacking’ droplet technology for million-scale single-cell RNA-seq

scifi-RNA-seq integrates combinatorial indexing with fluidic indexing

@ Droplet-based single-cell RNA-seq (e.g. 10x Genomics) is highly inefficient due to stochastic
droplet loading (= most droplets remain empty)

@ We use single cells/nuclei as our reaction compartment and pre-index all RNA molecules on
384-well plates (as in combinatorial indexing)

@ Massive overloading of the 10x Genomics machine puts 5-10 cells into each droplet, yielding
>1 million cells per chip (instead of ~50Kk)

scifi-RNA-seq assay design 151,788 cells in one 10x Genomics channel
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CelM @%‘%%Hmmm Datlinger, Rendeiro et al. (2021) Nature Methods (https://nature.com/articles/s41592-021-01153-7) Page 33 of 38




Interpretable deep learning for causal inference in biological networks

Biological networks are very different from deep learning networks

hidden layver 1 hidden layer 2 hidden layer 3
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We developed interpretable deep learning on regulatory networks
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Organoids provide an ideal platform for mechanistic biology at scale

Advantages of organoids:

Pilot project to establish an Organoid Cell Atlas

Single-cell profiling of human organoids

Pluripotent or adult
stem cells in vitro

Human Organoids

Advantages: Experimentally accessible, fewer
practical and ethical constrains

Organoid Cell Atlas Portal and
single-cell mapping algorithm

%fgb 6%3%%}

h@m

=4

Single-cell sequencing and imaging data

Single-cell profiling of human primary
tissue samples

Primary Samples Living or post-mortem

tissue donors

Advantages: Complex organ structure,
directly reflecting human physiology

@ Faithfully recapitulate human biology (much better than immortalized cell lines)

@ High-throughput perturbation experiments with molecular & phenotypic readout

HCAIOrganoid 3¢

Website: https://hca-organoid.eu/

MEDICAL UNIVERSITY
CeVMl  (@)uenisass

Bock et al. (2021) Nature Biotechnology (https://nature.com/articles/s41587-020-00762-x)
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Presentation outline

1. Developmental history and epigenetic cell states in immune diseases

Immune cells “remember” their differentiation history and re-use
regulatory processes of normal development in immune diseases

2. Epigenetic potential for rapid immune gene activation

Hematopoietic and non-hematopoietic structural cells implement an
epigenetic potential for rapid immune gene activation upon challenge

3. Epigenetic cell states connecting the past and future of cancer cells

Epigenetic and transcription-regulatory profiles identify cancer cells-of-
origin, detect disease progression, and prioritize potential therapies

4. Rational programming of human cells for biomedical applications

Interpretable deep learning, CRISPR single-cell sequencing, and
patient-derived organoids facilitate mechanistic biology at scale

CelMM @

MEDICAL UNIVERSITY
OF VIENNA
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Summary & outlook: Epigenetics connects the cells’ past and future

Cells retain an epigenetic record
of their developmental history
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Can we engineer epigenetic cell states for better cell-based therapies?

@ This is a topic of a major research project in our lab

(ERC Consolidator Grant 2021-2026) rﬂ@;}é e
()
@ We try to epigenetically “supercharge” CAR T cells to work \‘“J\-}‘
T Cell CAR

effectively in solid tumors (and autoimmune diseases?)

Epigenetic cell states capture a cell’s
future potential to respond to stimuli
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Example: Genome-wide high-content screen in CAR T cells

3 donors x 8 readouts x 77,000 gRNAs x 1000x coverage = >12 billion CAR T cells

Tumor cells vs. CAR T cells

CelVVl  (@)senistagneesry Datlinger, Pankevich, Arnold et al., work-in-progress Page 38 of 38
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