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1D: Genome sequence

Protein-coding genes

Regulatory elements

“2D”: Epigenetic marks

DNA methylation

Histone modifications

3D: Nuclear organization

Chromatin domains

Promoter-enhancer links

Epigenetic mechanisms constitute a layer of genome regulation beyond the DNA sequence
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Differentiation blocks and aberrations in cancerEpigenetic landscape (Waddington 1957)

Gene regulatory network underlying the landscapeEpigenetic memory of cell state trajectories 

The epigenetic landscape visualizes cell states, their developmental past & future potential
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Definition & diagram by

Sui Huang (ISB Seattle)

Huang (2011) BioEssays

(http://doi.org/10.1002/bies.201100031)

Goal: A quantitative, disease-relevant & predictive model of the epigenetic landscape
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DNA methylation mapped (by RRBS) and analyzed across 580 animal species & 2443 tissue samples

Klughammer, Romanovskaia et al. (2023) Nature Communications (https://www.nature.com/articles/s41467-022-34828-y) 

Epigenetic regulation by DNA methylation is deeply conserved in vertebrate evolution

DNA methylation and DNA sequence are closely linked (DNA trimers predict local DNA methylation)

We can predict DNA methylation profiles across species, for example octopus 🐙 to elephant 🐘 (ROC-AUC 0.76)

Cancer risk and Peto’s paradox: DNA methylation may help protect long-lived birds & mammals against cancer
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2. Epigenetic potential for rapid immune gene activation

Hematopoietic and non-hematopoietic structural cells implement an 

epigenetic potential for rapid immune gene activation upon challenge

1. Developmental history and epigenetic cell states in immune diseases

Immune cells “remember” their differentiation history and re-use 

regulatory processes of normal development in immune diseases

4. Rational programming of human cells for biomedical applications

Interpretable deep learning, CRISPR single-cell sequencing, and 

patient-derived organoids facilitate mechanistic biology at scale

Presentation outline

3. Epigenetic cell states connecting the past and future of cancer cells

Epigenetic and transcription-regulatory profiles identify cancer cells-of-

origin, detect disease progression, and prioritize potential therapies
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An early proof-of-concept focusing on the human blood lineage

1. We developed a scalable method for single-cell DNA methylation profiling

2. Applied it to the epigenomes of FACS-enriched stem/progenitor cells

3. Performed bioinformatic lineage reconstruction using machine learning

scWGBS: Farlik, Sheffield et al. (2015) Cell Reports

(http://doi.org/10.1016/j.celrep.2015.02.001)

Farlik, Halbritter, Müller et al. (2016) Cell Stem Cell (http://doi.org/10.1016/j.stem.2016.10.019) 

Computational

lineage inference

1.

2. 3.
Collaboration:

Reconstructing cellular differentiation hierarchies from epigenetic data
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Langerhans cell histiocytosis: A cancer? An autoimmune disease?

Rare pediatric disease: <1 case per 100,000, most patients survive

Pathology: Accumulation of CD1a+ CD207+ cells in various tissues 

Hybrid position between a cancer (BRAF V600E) and an autoimmune 

disease (inflammation, no genetic evolution)

Single-cell RNA-seq, ATAC-seq unravels developmental hierarchy in situ: Collaboration:

Halbritter, Farlik et al. (2019) Cancer Discovery (http://dx.doi.org/10.1158/2159-8290.CD-19-0138) 

An unexpected epigenetic landscape in a rare childhood disease
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Sarcoidosis: Granuloma formation of unknown cause 

5 to 40 cases per 100,000, frequency highly variable by genetic ancestry

Affecting skin, lung, and other organs, <5% mortality, substantial morbidity

Few treatment options – but initial data that mTOR is critical for granuloma 

formation in a mouse model of sarcoidosis (Linke 2017 Nature Immunology)

N-of-1 clinical trial for mTOR inhibition 

Collaboration:

Single-cell and spatial profiling for clinical trials monitoring

Redl et al. (2023) Lancet Rheumatology, in press
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Conclusions

Pathogenic macrophages and 

fibroblasts support granulomas

Granulomas exploit elements of 

lymphoid organ development 

Results of single-cell and spatial

profiling at baseline of the trial

Krausgruber, Redl, Barreca et al. (2023) Immunity (http://dx.doi.org/10.1158/2159-8290.CD-19-0138)

N=12
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Structural cells: Giving shape to our body, contributing to host immunity?

We performed epigenome & transcriptome profiling of “structural cells” 

Epithelium, endothelium, fibroblasts were analyzed across 12 organs

We found widespread activity of immune genes in these non-immune cells

Krausgruber, Fortelny et al. 2020 Nature (https://nature.com/articles/s41586-020-2424-4)

Epigenetic states capture the cells’ developmental past – can they predict their future?
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Integrative analysis of epigenome (ATAC-seq) and transcriptome (RNA-seq) data

Open chromatin at promoter regions is 

correlated with high gene expression

BUT: Some genes have widely open promoters 

yet low levels of gene expression

These genes are enriched for immune functions

Krausgruber, Fortelny et al. 2020 Nature (https://nature.com/articles/s41586-020-2424-4)

Hypothesis: These immune genes carry an epigenetic potential for rapid activation

An epigenetic potential for immune gene activation in structural cells
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Validating the epigenetic potential of structural cells

We challenged mice with a systemic infection model 

(LCMV, collaboration with Andreas Bergthaler at CeMM)

Preferential activation of “poised” immune genes

Model: Stimulus-dependent

activation of epigenetic potential

Systemic viral infection activates the epigenetic immune potential of structural cells
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Hypothesis: Baseline immune signaling keeps target genes in open chromatin state

We tested this hypothesis with a focus on JAK-STAT signaling in homeostasis

We performed RNA-seq & ATAC-seq for T cells & macrophages from 12 mutant mouse models

How to immune cells retain their epigenetically primed state?

Nikolaus Fortelny, Matthias Farlik et al., manuscript submitted
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STAT knockout mice show reduced immune gene activity even at homeostasis
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Baseline JAK-STAT signaling at homeostasis is driven by the tissue environment 



Page 17 of 38

BCG stimulates both innate & adaptive immunity, allowing us to compare these effects 

323 individuals vaccinated with BCG, three time points, clinical study led by Mihai Netea (Nijmegen)

We performed ATAC-seq on the entire cohort and analyzed the data with various immune readouts

Time series character of the dataset enables investigation of baseline versus BCG effect

How does epigenetic priming affect immune responses in humans? 

Simone Moorlag, Lukas Folkman, Rob ter Horst, Thomas Krausgruber et al. (2023) Immunity, in press
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How does epigenetic priming affect immune responses in humans? 

Simone Moorlag, Lukas Folkman, Rob ter Horst, Thomas Krausgruber et al. (2023) Immunity, in press

We observe responders vs. non-responders for 

both innate and adaptive immune responses

Chromatin accessibility predicts innate 

but not adaptive immune responders
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DNA

Epigenome profiling
Transcriptome

profiling

Genome

profiling

RNADNA methylation Chromatin

Stable FluctuatingCell type-specific

Using epigenetic information to guide personalized medicine

Clinical utility of epigenetic information

Disease stratification for precision medicine

Monitoring epigenetic drug response

Detecting footprints of environmental exposure

Inferring tissue type from DNA

Quantifying immune cell infiltration
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Bioinformatic approach

1. Training and cross validation 

of an elastic net classifier 

2. Application to an independent 

test set of tumor samples

3. Validation based on clinical 

diagnostics data 

Fernandez, Assenov et al. (2012) Genome Research (http://dx.doi.org/10.1101/gr.119867.110) 

Example 1: Bioinformatics enables epigenetic cancer diagnostics

Cancers of unknown primary site (CUPs)

Metastatic cancers of unknown primary site are hard to treat

DNA methylation mapping established in a reference set of cell 

type signatures

Bioinformatic analysis of DNA methylation in CUPs readily 

identified the tissue of origin
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Validated Accuracy Promising Clinical Utility

Example 1: The EPICUP biomarker for tissue-of-origin in cancer

Five years later – a validated biomarker

Public-private partnership by Manel Esteller and Ferrer Biotech (Barcelona)

Retrospective validation study done on 10,000 clinical samples

Biomarker CE-certified with 97% sensitivity and >99% specificity
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A spectrum of epigenetic states reflecting cell-of-origin

MIRA (Methylation-based Inference

of Regulatory Activity) method

Example 2: Dissecting epigenetic heterogeneity in Ewing sarcoma 

Ewing sarcoma: Aggressive childhood cancer with unexplained heterogeneity

Driven by a single genetic event (EWS-ETS gene fusion), few other genetic defects

Hypothesis: Epigenetic heterogeneity may explain the observed clinical variability

Collaboration:
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Approach: Cohort: 112 primary, IDH wildtype glioblastoma patients, each with 2-4 time points

Selected from the Austrian Brain Tumor Registry (FFPE tumor blocks)

DNA methylation profiling using FFPE-optimized RRBS protocol in 499 tumor samples

Multimodal data integration by statistical methods and machine learning
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Klughammer et al. (2018) Nature Medicine (http://dx.doi.org/10.1038/s41591-018-0156-x) 

Example 3: Glioblastoma progression based on a national registry



Page 25 of 38

ATAC-seq: 7 patients, 8 time points, 

6 cell types

>43,000 single-cell transcriptomes

Dataset Model / Interpretation

Conserved response, heterogeneous speed

NF-κB binding down ➔ lineage TFs down ➔

erosion of CLL cell identity ➔ quiescence

C
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Rendeiro, Krausgruber et al. (2020) Nature Communications (https://nature.com/articles/s41467-019-14081-6)

Example 4: Time series analysis of the response to targeted leukemia therapy
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Integration of epigenome profiling and single-cell chemosensitivity 

profiling prioritizes drug sensitivities for combination therapy

Schmidl, Vladimer, Rendeiro et al. (2019) Nature Chemical Biology (http://dx.doi.org/10.1038/s41589-018-0205-2)

Collaboration:

Example 4: Drug-response profiling & epigenetics prioritize drug combinations

Identifying drugs to enhance ibrutinib’s anti-CLL effect
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Goal: Delay disease progression until the 

patient dies for unrelated reasons

Concept: Manipulate the evolutionary 

dynamics on the cells’ fitness landscape

Toward adaptive therapy in leukemia (CLL) HIV therapy as proof-of-principle

Bock & Lengauer (2012) Nature Reviews Cancer (http://dx.doi.org/10.1038/nrc3297) 

Vision: Patient-specific ‘route planning’ on disease landscapes
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Detecting epigenetic footprints of Ewing sarcoma in cell-free DNA

A whole genome sequencing based liquid biopsy assay that does not depend on genetic alterations

Many childhood cancers have few genetic alterations, making liquid biology analysis challenging

Fragmentation patterns of tumor-derived DNA in the blood reflect tumor-specific epigenetic signatures

Collaboration:



Page 29 of 38

2. Epigenetic potential for rapid immune gene activation

Hematopoietic and non-hematopoietic structural cells implement an 

epigenetic potential for rapid immune gene activation upon challenge

1. Developmental history and epigenetic cell states in immune diseases

Immune cells “remember” their differentiation history and re-use 

regulatory processes of normal development in immune diseases

4. Rational programming of human cells for biomedical applications

Interpretable deep learning, CRISPR single-cell sequencing, and 

patient-derived organoids facilitate mechanistic biology at scale

Presentation outline

3. Epigenetic cell states connecting the past and future of cancer cells

Epigenetic and transcription-regulatory profiles identify cancer cells-of-

origin, detect disease progression, and prioritize potential therapies

Viral

infection

Bacterial

infection

Sterile 

inflammation

Physical 

insult

Inflammation
Metabolic 

changes



Page 30 of 38

Lead technology: Next 
Generation Sequencing

Lead technology: Massive-
scale DNA synthesis
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Lead technology:
Interpretable 
machine learning

Our goal: Programming cells for biological discovery and therapeutic applications

Research laboratory: https://bocklab.org Twitter: https://twitter.com/BockLab
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High-content CRISPR screening

Bock et al. (2022) High-content CRISPR Screening. Nature Reviews Disease Primers (http://dx.doi.org/10.1038/s43586-021-00093-4)
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Related methods

Perturb-seq – A. Regev & J. Weissman labs (Dixit et al, 2016; Adamson et al, 2016)

CRISP-seq – I. Amit lab (Jaitin et al, 2016)

Mosaic-seq – G. Hon lab (Xie et al, 2017)

Paul Datlinger et al. (2017) Nature Methods (http://dx.doi.org/10.1038/nmeth.4177) 

CROP-seq enables CRISPR screening with very complex phenotypes

“CROP-seq as a service” 

for biotech/pharma (CoI)

Formerly: Aelian Biotechnology
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151,788 cells in one 10x Genomics channelscifi-RNA-seq assay design

‘Hacking’ droplet technology for million-scale single-cell RNA-seq

scifi-RNA-seq integrates combinatorial indexing with fluidic indexing

Droplet-based single-cell RNA-seq (e.g. 10x Genomics) is highly inefficient due to stochastic 

droplet loading (→ most droplets remain empty)

We use single cells/nuclei as our reaction compartment and pre-index all RNA molecules on 

384-well plates (as in combinatorial indexing)

Massive overloading of the 10x Genomics machine puts 5-10 cells into each droplet, yielding 

>1 million cells per chip (instead of ~50k)

Datlinger, Rendeiro et al. (2021) Nature Methods (https://nature.com/articles/s41592-021-01153-z)
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Biological networks are very different from deep learning networks

We developed interpretable deep learning on regulatory networks

Nikolaus Fortelny & Christoph Bock (2020) Genome Biology (https://doi.org/10.1186/s13059-020-02100-5)

Fully connected artificial neural networkGene-regulatory network

Interpretable deep learning for causal inference in biological networks
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Advantages of organoids: Faithfully recapitulate human biology (much better than immortalized cell lines)

High-throughput perturbation experiments with molecular & phenotypic readout

Pilot project to establish an Organoid Cell Atlas

Website: https://hca-organoid.eu/

Organoids provide an ideal platform for mechanistic biology at scale

Bock et al. (2021) Nature Biotechnology (https://nature.com/articles/s41587-020-00762-x)
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Cells retain an epigenetic record 

of their developmental history 

Epigenetic cell states capture a cell’s 

future potential to respond to stimuli

Can we engineer epigenetic cell states for better cell-based therapies?

This is a topic of a major research project in our lab

(ERC Consolidator Grant 2021-2026)

We try to epigenetically “supercharge” CAR T cells to work 

effectively in solid tumors (and autoimmune diseases?)

Summary & outlook: Epigenetics connects the cells’ past and future 
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3 donors x 8 readouts x 77,000 gRNAs x 1000x coverage → >12 billion CAR T cells

Example: Genome-wide high-content screen in CAR T cells 

Tumor cells vs. CAR T cells

Datlinger, Pankevich, Arnold et al., work-in-progress
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