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Danube Symposium Synopsis

• “Recently introduced Total-body PET systems offer a 
paradigm shift in medical sciences, providing a 
comprehensive assessment of the entire patient 
with their biological and clinical state, rather than 
just isolated diseases or organs.”

• Recently introduced Network Medicine approaches 
offer a paradigm shift in medical sciences, providing 
a comprehensive assessment of the entire patient 
with their biological and clinical state, rather than 
just isolated diseases or organs.



Recognition of Complexity in Physics

Newtonian Physics

Quantum Mechanics (Bohr, 
Planck, Einstein, Schrodinger, 
Heisenberg, etc.)

Chaos Theory (“Sensitive dependence 
on initial conditions”by Lorenz, Smale, 
Santa Fe Institute, etc.)

COMPLEXITY



Overview of the History of Network Medicine

COMPLEXITY

Network Science Medicine

Physiology/
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Molecular 
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What Is a Network? 
A collection of points (nodes) that are joined in pairs by lines 
(edges).  A graphical approach to visualize and analyze 
relationships between variables of interest.
(Adapted from M. Newman, Networks: An Introduction, 2010)

Biological Network Social Network Ecological Network



High Throughput Assessment of 
Multiple Biological Processes

From Network Medicine: Complex Systems in Human Disease and Therapeutics, 
edited by Loscalzo/Barabasi/Silverman



What Is Network Medicine? 

The study of cellular, disease, and social networks which 
aims to quantify the complex interlinked factors contributing 
to individual diseases.
(Adapted from Barabasi, NEJM 2007; 357:404)

Key components of Network Medicine:
--Holistic rather than reductionist approach
--Construction of molecular disease networks
--Non-linear responses of complex systems
--Emergent properties from entire network
--Investigates responses of networks to various types of 
perturbation
--Employs systems biology methods



Systems and Medicine: Terminology 
(Zanin/Schmidt, Network and Systems Medicine 2021)

• Systems Biology: Field of study focusing on complex interactions within 
biological systems, using a holistic approach. [See also Ron Germain: a 
scientific approach that combines the principles of engineering, 
mathematics, physics, and computer science with extensive experimental 
data to develop a quantitative as well as a deep conceptual understanding 
of biological phenomena, permitting prediction and accurate simulation of 
complex (emergent) biological behaviors.]

• Systems Medicine: Interdisciplinary field of study considers the human 
body as a system composed of interacting parts, with complex 
relationships on multiple levels that need to be understood based on a 
patient’s genomics, behavior, and environment. 

• Precision Medicine: Medical model using characterization of individual 
phenotypes and genotypes for tailoring the right therapeutic strategy for 
the right person at the right time, to determine disease predisposition, 
and to deliver timely and targeted prevention.



Systems, Networks, and Medicine: 
Relationships between Fields
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Types of Networks Utilized in Network Medicine  
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Approaches to Complex Diseases in 
Channing Division of Network Medicine

Building 
Disease 

Networks

Defining 
Molecular 
Pathways

Identifying 
Optimal 
Disease 

Phenotypes

Developing 
and Validating 
New Disease 

Classifications

Developing New 
Treatments and 

Preventions

Integrating 
Multiple         

–omics Data 
Types



Principles of a Network Medicine Research 
Team: 

1. Mix of network methodologists, data 
analysts, clinical experts, and 
molecular/cell biologists

2. Team is tailored to specific scientific 
question/project (size and members)

3. Mix of trainees, junior faculty, and senior 
faculty

4. Investigators can change roles throughout 
their careers



Network Medicine Alliance

• Includes 33 universities and institutions from around 
the world

• Founder: Joseph Loscalzo
• Co-Founders: Albert-Laszlo Barabasi and Enrico Petrillo

• Goals: Promote interdisciplinary research in Network 
Medicine

• Website: https://www.network-medicine.org



Waves of Discovery 
in Complex Disease Genetics
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Potential Impact of Genetics on Complex 
Disease Diagnosis and Treatment

• Learning about New Biological Pathways in Disease Pathogenesis:
• Nature’s pertubations of human biological networks
• Identifying targets for new drug development:  8% of FDA 

approved drugs vs. 2% of Phase 1 drugs have OMIM/GWAS 
support (Nelson, Nat Genet 2015; 47: 856)

• Reclassifying Complex Diseases:
• Based on etiology and disease pathophysiology 

• Pharmacogenetics:
• Finding patients likely to have excellent treatment response
• Avoiding treatment of individuals at high risk for adverse events



COPD: Background and Familial Aggregation

• Chronic airflow obstruction not fully reversible, as measured by lung 
function tests

• Fourth leading cause of death in the USA
• Abnormal but variable response to noxious particles/gases (e.g., 

cigarette smoking)
• Pathophysiology includes airway disease and lung parenchymal 

destruction (emphysema)
• Chronic lung inflammation in COPD can persist decades after 

smoking cessation
• COPD clusters in families, with quantitative genetic analysis 

demonstrating significant heritability for COPD of approximately 40%
• A small percentage of COPD patients inherit severe alpha-1 

antitrypsin deficiency



COPD as a Model of Complex Disease 
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Approach for Genome-wide Association Studies  
(Hardin, J COPDF 2014)



GWAS:  Strengths and Weaknesses

• Strengths
– Multiple genome-wide significant results found in many complex 

diseases
– GWAS associations have often been replicated by multiple 

studies
– Genotyping and Analysis approaches are well-established

• Weaknesses
– Functional variants identified in a small minority of loci
– Odds ratios for identified GWAS loci are low
– GWAS loci (at least in isolation) are not very useful for prediction
– Much of the estimated heritability remains unexplained



International COPD Genetics Consortium COPD 
GWAS (Sakornsakolpat, Nat Genet, 2019)

• Included 35,735 COPD cases and 222,076 controls from 24 studies
• Identified 82 genome-wide significant (P < 5x10-8) associations

FAM13A
TGFB2 



• Discovery
– Genetic Association Analysis
– Genotyping Panel or Whole Exome/Whole Genome Sequencing

• Localization
– Fine Mapping 
– Long-range Genetic Interactions
– Regions containing functional activity 

• Functional Validation
– Cell-based models
– Animal models 

Moving from Gene Discovery to Gene 
Localization to Functional Validation



Relationship of Genetics Research to 
Cell/Molecular Biology Studies

GWAS Associations

Genetics Researchers

Cell/Molecular Biologists

• No thanks, we have 
our own ideas of 
what to study

• We don’t believe that 
what you found is 
important or useful
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Chromosome conformation capture



Overview of MPRA Design for FAM13A GWAS SNPs
(Castaldi/Zhou, AJRCCM 2019)
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Reporter Assays Testing Allele-specific 
Enhancer Activity of FAM13A MPRA SNPs
(P. Castaldi/X. Zhou, AJRCCM 2019)

• 606 SNPs were tested in MPRA; 45 
SNPs showed evidence for allele-
specific regulatory activity

• Selected six SNPs with consistent 
evidence in multiple experiments 
and strong GWAS associations

• Three variants had allele-specific 
activity in 16HBE validation reporter 
assays

• Chromatin conformation capture 
effects with FAM13A promoter were 
seen for rs2013701 and rs7671167

• Focused on rs2013701, which had 
increased FAM13A expression for 
risk allele



Using Chromatin Landscapes of Human Lung 
Cells to Predict Functional COPD GWAS 

Variants (Benway/Zhou, AJRCMB, 2021)



Using Chromatin Landscapes of Human Lung 
Cells to Predict Functional COPD GWAS 

Variants (Benway/Zhou, AJRCMB, 2021)



Fam13a-/- Mice: Cigarette Smoke Effects           
(Z. Jiang/X. Zhou, AJRCCM 2016)

Note:  Fam13a knockout is protected from emphysema development



FAM13A in COPD: Biological Mechanism           
(Z. Jiang/X. Zhou, AJRCCM 2016)

Complex of FAM13A, PP2A, 
and Beta-catenin 

Beta-catenin Inhibitor 
Reverses Fam13a KO Mouse 
Emphysema Protection



• Chromatin Interactions of Functional Variants with GWAS 
Genes (e.g., 3C): HHIP (Zhou, Hum Mol Genet 2012)

• Massively Parallel Reporter Assays to Find Functional 
Variants: FAM13A (Castaldi, AJRCCM 2019)

• Integration of chromatin landscapes with fine-mapped 
genetic variants using delta-SVM (Benway, AJRCMB 2021)

• Perturb-Seq approaches to combine CRISPR-interference 
with single cell RNA-seq (In progress by Malik/Cho/Zhou)

• Mouse Models of COPD GWAS Genes

Identifying Key Genes in COPD GWAS Regions



• What are high-confidence COPD susceptibility genes from 
GWAS based on genetic and functional evidence?

– HHIP, FAM13A, AGER, FBLN5, SFTPD, TET2, IREB2, 
MFAP2, DSP, FBXO38, NPNT, TGFB2, MMP12 (gene list 
and gene order is admittedly highly subjective)

–Most COPD GWAS genes don’t fit into pre-GWAS 
understanding of COPD pathogenesis

– All COPD GWAS genetic variants are small effect size 
and likely work together in biological networks to 
influence disease risk

Identifying Key Genes in COPD GWAS Regions



Cluster of COPD GWAS Signals on 
Chromosome 4q 

(Sakornsakolpat, Nat Genet 2019)



Potential Explanations for COPD 
GWAS Cluster on Chromosome 4q



Partial Correlations between Gene Expression 
Levels of COPD Genes on Chromosome 4q 
Controlling for Protein-Protein Interactions

(Gentili, Submitted)

NPNT-HHIP, BTC-NPNT, and FAM13A-TET2 partial correlations 
were replicated in three independent lung tissue cohorts



Clustering of Partial Correlation Networks on 
Chromosome 4q (Gentili, Submitted)

Clustering the co-expression network, four COPD genes (BTC, HHIP, 
NPNT, and PPM1K) appeared in the same network community



Integrated Transcriptomic Correlation 
Network Analysis of COPD

(Paci/Farina, Sci Rep 2020)
– SWItchMiner (SWIM) software was used to identify gene expression 

correlation network modules using lung tissue microarray data from 219 COPD 
and 108 controls for training and 111 COPD and 40 controls for testing

– SWIM exploited negative correlation in gene expression to identify 62 switch 
genes which may be drivers of complex disease 

– SWIM identified three correlation network modules with 190, 1411, and 64 
genes. For Module 1, CAVIN1 and AGER have highest module membership and 
are both down-regulated in COPD cases 



Disease Modules, Disease 
Neighborhoods, and the Interactome

Disease Module

Interactome Disease Neighborhood

Leopold/Loscalzo, Circ Research 2018; 122:1302-1315



COPD seed genes (n=11)  

 Mendelian Syndromes:  SERPINA1, ELN, FBLN5

 COPD GWAS:  HHIP, FAM13A, IREB2, CHRNA3, CHRNA5, RIN3, TGFB2, MMP12

Mapping of COPD Seed Genes in the Interactome
(Sharma, Sci Rep 2018)
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COPD Disease Network Module:  Expanded 
with FAM13A Interactors  (Sharma, 2018)



COPD PPI Network Module: Shortest Paths between 
COPD GWAS Genes 

(Lu Gong/Xiaobo Zhou/Victor Hsu, AJRCMB 2021)

• Known components of the nicotinic acetylcholine 
receptor: 
– CHRNA5-CHRNA7-CHRNA3 and CHRNA5-CHRNB4-CHRNA3

• Known relationships of TGFBeta with the elastic fiber:
– TGFB2-BGN-ELN-MMP12, TGFB2-DCN-ELN-MMP12, and 

TGFB2-FBN1-ELN-MMP12

• Potentially novel relationships between COPD GWAS 
genes:
– FAM13A-AP3D1-CTGF-TGFB2
– CHRNA5-CANX-LPA-MMP12



Technical Validation of FAM13A-AP3D1-CTGF-TGFB2
(Gong, AJRCMB 2021)

FAM13A binds to AP3D1

AP3D1 binds to TGFB2 but not 
CTGF

New Network Model:  FAM13A-AP3D1-TGFB2-CTGF



AP3D1 – CTGF in consensuspathDB

AP3D1 – CTGF in consensuspathDB

HPRD dataset





Functional Assessment of FAM13A-AP3D1-TGFB2
(Gong, AJRCMB 2021)

Ve
cto

r
FA

M
13

A

250
200

100

0TG
F-

β2
 (p

g/
m

l)

Intracellular

150

50

Ve
cto

r
FA

M
13

A

400
300
200

0TG
F-

β2
 (p

g/
m

l)

Extracellular - total

*

100
Ve

cto
r

FA
M

13
A

200

100

0TG
F-

β2
 (p

g/
m

l)

Extracellular - exosome

*150

50
Ve

cto
r

FA
M

13
A

TG
F-

β2
 (p

g/
m

l)
Extracellular - soluble

200

100

0

150

50



Functional Assessment of FAM13A-AP3D1-TGFB2
(Gong, AJRCMB 2021)
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Functional Assessment of FAM13A-AP3D1-TGFB2
(Gong, AJRCMB 2021)



How Will We Build PPI Network 
Links between COPD GWAS Genes?



• Used HHIP transfected into IMR90 (fibroblast) cells
• Pulled down HHIP and ran mass spectrometry analysis to 

identify detected proteins
• Analyzed data with SaintExpress software
• 78 proteins significantly different between HHIP vector 

and empty vector, including HHIP (as expected), multiple 
cytoskeletal components (e.g., TUBB4B, TUBA1C, ACTB), 
and CAVIN1

Protein Interactions of HHIP in IMR90 Cells 
(Hiro Inuzuka and Zhonghui Xu)



Co-precipitation assay performed by Hiroyuki Inuzuka and Wenyi Wei



• There are substantial differences between cell types in 
protein-protein interactions for COPD GWAS gene 
products

• COPD GWAS gene products interact with many other 
proteins and likely have multiple biological functions 
beyond current knowledge

• Currently available public PPI databases miss most 
protein-protein interactions

• Relatively close connections between COPD GWAS genes 
can be identified using PPI network-based approaches

Experimental Protein-Protein Interactions: 
What Are We Learning?



COPDGene Study Phases

Phase 1: Enrollment Phase 2: Five-Year 
Follow-Up

Phase 3: Ten-Year 
Follow-Up

(2007-2012)

N=10,371

(2012-2017)

N=6,153

(2017-2023)

N=4,796 
(with 3,570 on-site)

LFU/
Mortality

LFU/
Mortality COVID-19/C4R



Measured Phenotypes on COPDGene 
Chest CT Scans (Washko/San Jose)



Genetic Associations for Different 
COPD-Related Phenotypes 
(Ragland/Benway, AJRCCM, 2019)



Emphysema 
Predominant

Age 47, FEV1 20%Age 42, FEV1 38%

Airway Disease 
Predominant



Disease Stage/ 
Progression

Disease 
Heterogeneity

Risk Factor 
Heterogeneity

Genetics

Airway Disease Early vs. 
Late

Active 
vs. 

Inactive

Mild vs. 
Severe

Environmental Exposures

Demographics (e.g., Age, Sex)

Epigenetics

Risk Factor Interactions

Emphysema 
Severity

Emphysema 
Pattern/Distribution

Exacerbations

Endotypes

Different Aspects of COPD Heterogeneity



COPDGene Study  
Approaches to Define COPD Subtypes
• Clinical Subtypes
– Imaging-based expert classification
–Epidemiologically-driven analysis of COPD-

related phenotypes 

• Machine Learning Approaches
–Defining groups:  Cluster analysis
–Defining disease axes:  Factor analysis
–Defining disease trajectories: Bayesian 

nonparametric trajectory mixture modeling



Subtyping Variables Area Under Curve 
(Standard Error)

P-value for Subtype 
in Model

K-Means Cluster Categories
0.956 (0.948-0.964) P<0.001

Disease Trajectory Categories
0.667 (0.641-0.694) P<0.001

Factor Analysis (FA) Subtype 
Categories 0.922 (0.911-0.933) P<0.001

GOLD Spirometry Categories
0.763 (0.748-0.779) P<0.001

COPD 2019 Categories 0.651 (0.634-0.667) P<0.001
FA Emphysema Axis Score 0.990 (0.987-0.993) P<0.001
FA  Airway Axis Score 0.518 (0.495-0.541) N.S.
Subtype p-value is p-value for the independent variable subtype from logistic regression, or 
for categorical subtypes it is the minimum p-value across all subtype categories.

Receiver-Operator Curve Analysis of Non-Emphysema-Predominant 
vs. Emphysema-Predominant Disease Prediction by Other Subtyping 

Variables (Castaldi/Silverman, Am J Epidemiol, 2023)



COPDGene Omics Data 

Omics Data Type Phase 1 (Enrollment) Phase 2 (Five-Year Follow-Up) Phase 3 (Ten-Year Follow-Up)

Whole Genome 
Sequencing
(Illumina)

9,921 completed 696 completed (without 
adequate Phase 1 DNA)

None planned

RNA-Seq
(Illumina)

Not available 4,145 completed 1,520 funded but not yet completed
2,000 proposed to TOPMed

DNA 
Methylation 
(EPIC Array)

6,542 completed 5,598 completed 3,500 EPIC arrays proposed to 
TOPMed

Proteomics
(SomaScan)

1,248 completed 
with 1.3K platform

6,017 completed with v4.0 
platform

1,483 completed (v4.0)
2,000 proposed to TOPMed (v4.1)

Metabolomics
(Metabolon)

1,183 completed ~6,000 recently completed 1,483 in progress
2,000 proposed to TOPMed



Rationale for Integrating Multiple Omics 
Data Types in Complex Disease 

Challenge Rationale
Measurement error Reduce noise from a single Omics data 

type; accentuate correlated signal 
across multiple data types

Uncertain pathobiological 
mechanisms

Understand biological mechanisms for 
genetic variation

Single Omics data may not 
capture relevant signals

Different time scales are captured

Biological levels do not work 
in isolation

Interactions between biological levels 
can be found

Complex diseases do not act 
at a single biological level

Generate more accurate biological 
models of disease



Proteomics Analysis of Lung Tissue Samples
(Yu-Hang Zhang, Am J Physiol Lung 2021)

100 COPD Cases
52 Controls

Clinically 
Indicated 
Thoracic 
Surgery

Liquid 
Chromatography-
Mass 
Spectrometry/Mass 
Spectrometry

Bioinformatics 
Analysis

Trans-Proteomic 
Pipeline
Normalization (vsn)
Imputation (KNN)
Surrogate Variable 
Analysis
Linear Regression



Proteomics Analysis of Lung Tissue Samples
(Yu-Hang Zhang, Am J Physiol Lung 2021)

COPD-associated 
Proteins 
(FDR < 0.05)

Overlap with 
Previous Lung 
Tissue Proteomics 
Studies (p<0.05)

Overlap with 
Previous Plasma 
Proteomics Studies 
(p<0.05)

Biological 
Processes for Top 
COPD-associated 
Proteins

AGRN   SUSD2
ANXA2 DNAH5
GPRC5A ESAM
PLLP RASIP1
OCLN SRSF6
LDHA CAV1
CAVIN1 AQP1
IL33 H3C1
EHD2 SFTPB
S100A10 LAMA4
EHD3 FTH1
FTL ARRB1
TENS3

ANXA2
EHD2
EHD3
TNS3
ARRB1
S100A10
RASIP1
CAPG
DPYSL2
TGM2
MMP2

FGA
RAGE



How Similar Are Omics Data Types? 
Lung Tissue Research Consortium (Zhang, AJRCMB 2023)
• 98 Lung Tissue Samples: 73 COPD and 25 Controls
• RNA-Seq by TOPMed
• Mass Spectrometry Proteomics on same lung tissue sample
• Compare residuals of RNA and protein for 4,039 matched genes after 

adjusting for COPD affection status, age, sex, and batch effects

Median 
correlation 
coefficient is 
0.054 



Colocalization of COPD GWAS and DSP Omics QTLs 
(Yu-Hang Zhang, Am J Resp Cell Mol Biol 2023)



Evolution of Multiple Omics Research
Approaches to Integrate Multiple 
Omics

Status

First Generation 
Multiple Omics 
Studies

--QTL studies linking genetics to 
Omics
--Correlation network module 
preservation in WGCNA

--Well-established
--Useful in selected 
applications

Second Generation 
Multiple Omics 
Studies

--Combine multiple Omics layers 
without prior biological knowledge 
(e.g., Similarity Network Fusion)
--Create heterogeneous networks 
with different Omics data type nodes

--Methods exist, but 
utility of results is 
uncertain

Third Generation 
Multiple Omics 
Studies

--Combine multiple Omics leveraging 
prior biological knowledge in network 
models
--Includes statistical framework for 
comparing networks
--Includes functional validation

--Methods in 
development



AP-MSRNA-SeqMethylation miRNA-Seq

Understand Gene 
Regulation

Determine 
Biological Function

Define Disease 
Pathobiology

Top-Down 
Approach to 
Build Biological 
Networks 

DNA RNA Protein

SNP
Genotyping

Gene 
Regulatory 
Network 
(PANDA)

Correlation 
Network 
(WGCNA)

Protein-Protein 
Interaction 

Network

GWAS Region

Bottom-Up  
Approach to 
Build Biological 
Networks 

Top-Down and Bottom-Up Approaches to Build Biological Networks

Example:  
FAM13A-CTNNB1

Example:  
FAM13A-AP3D1-TGFB2

Find Functional 
Variants

Identify Key Gene(s) 
in GWAS Region



• Challenging to move from population-level Omics data to 
new biological insights into complex diseases like COPD

• Approaches to build confidence and develop biological 
insights in genetics/Omics associations in complex 
diseases:
– Replication in other populations
– Orthogonal Information from different Omics data types and 

analytical approaches
– Functional Validation in cell-based and animal model systems

How Do We Know When We Have Learned 
Something Important About Complex 

Disease Pathogenesis?



Key Knowledge Gaps and Research Directions 
in Network Medicine 
(Silverman et al., WIRES Systems Biology and Medicine 
2020)

• Incompleteness of the Molecular Interactome
• Uncertainty about Key Genes in Genetic Association Loci
• Limited Application of Network Medicine to Human Samples and 

Diseases
• Gap between Systems Biology and Network Medicine
• Developing Analytical and Experimental Approaches for Network 

Validation
• Finding concordance/consistency in results based on different 

network methods and approaches
• Moving from Static to Dynamic Network Models



• Functional Genetics of COPD:  Xiaobo Zhou, Augustine Choi, Suzanne Cloonan, Dawn 
DeMeo, Craig Hersh, Jarrett Morrow, John Quackenbush, Kimberly Glass, John Platig, 
Amitabh Sharma, Arda Halu, Yang-Yu Liu, Caroline Owen, Bart Celli, Miguel Divo, 
Zhiqiang Jiang, Taotao Lao, Raphael Bueno, Gerard Criner, Phuwanat Sakornsakolpat, 
Jeong Yun, Chris Benway, Feng Guo, Dandi Qiao, Lu Gong, Wenyi Wei, Victor Hsu

• COPDGene:  James Crapo, Barry Make, John Hokanson, Elizabeth Regan, Russ Bowler, 
Carla Wilson, Terri Beaty, Michael Cho, Peter Castaldi, David Lynch, George Washko, 
Raul San Jose Estepar, James Ross, Merry-Lynn McDonald, Craig Hersh, Dawn DeMeo, 
Emily Wan, Brian Hobbs, Lystra Hayden, Adel El-Boueiz, Phuwanat Sakornsakolpat, 
Dandi Qiao, Wonji Kim, Matt Moll, Auyon Ghosh, and 21 Clinical Centers

• COPD Proteomics: Yu-Hang Zhang, Robert Moritz, Michael Cho, Peter Castaldi, Jarrett 
Morrow

• COPD Networks:  Kimberly Glass, Amitabh Sharma, Michele Gentili, Arda Halu, Brian 
Hobbs, John Platig, Jarrett Morrow, David Deritei, Zhonghui Xu

• Current Funding:  NIH U01 HL089856  and U01 HL089897 (COPDGene), R01 HL147148 
(Functional Genetics), R01 HL133135 (COPD Proteomics), and R01 HL152728 (PPI 
Networks)

Collaborators


