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Abstract

Network Medicine applies network science approaches to investigate disease

pathogenesis. Many different analytical methods have been used to infer rele-

vant molecular networks, including protein–protein interaction networks,

correlation-based networks, gene regulatory networks, and Bayesian net-

works. Network Medicine applies these integrated approaches to Omics Big

Data (including genetics, epigenetics, transcriptomics, metabolomics, and

proteomics) using computational biology tools and, thereby, has the potential

to provide improvements in the diagnosis, prognosis, and treatment of com-

plex diseases. We discuss briefly the types of molecular data that are used in

molecular network analyses, survey the analytical methods for inferring

molecular networks, and review efforts to validate and visualize molecular

networks. Successful applications of molecular network analysis have been

reported in pulmonary arterial hypertension, coronary heart disease, diabetes

mellitus, chronic lung diseases, and drug development. Important knowledge

gaps in Network Medicine include incompleteness of the molecular inter-

actome, challenges in identifying key genes within genetic association

regions, and limited applications to human diseases.

This article is categorized under:

Models of Systems Properties and Processes > Mechanistic Models

Translational, Genomic, and Systems Medicine > Translational Medicine

Analytical and Computational Methods > Analytical Methods

Analytical and Computational Methods > Computational Methods
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1 | INTRODUCTION

Networks are widely used to represent relationships between entities in complex data sets. A network can represent
physical connections, such as the internet, or it can be used to represent dependencies between different elements, such
as a diagnostic decision tree in clinical care. Network approaches have been applied to a variety of complex systems,
including social connections, ecological systems, and disease transmission. Network science provides approaches that
can be particularly valuable in the analysis of molecular data, which will be the focus on this review. Based on graph
theory, networks provide a useful structure to visualize and analyze relationships—both linear and nonlinear—among
variables of interest.

Graphically, we represent networks as collections of nodes (often circles) and edges (lines connecting the nodes),
which indicate a relationship between the nodes (Figure 1a). In addition to visualizing relationships between nodes,
properties of the network such as the number of connections a node possesses, or the number of paths passing through
a node, can provide important information about overall network structure and the stability of the network to
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perturbations. The multiple interactions encoded within networks can lead to network responses to perturbation that
cannot be predicted from studying isolated nodes or pairs of nodes; these complex responses are referred to as emergent
properties.

A network graph with only one type of node is denoted a “unipartite graph.” An example of a unipartite molecular
graph is a co-expression network in which two genes are linked if their expression levels are highly correlated. The
edges in such a graph have “edge weights” which represent the strength of the “interaction”; in this example, the corre-
lation coefficient. If we have two types of nodes (say, squares and circles) and connections only between one type and
the other, we can represent those connections using a “bipartite graph.” An example would be a gene regulatory net-
work in which we link transcription factors to the genes that they regulate. In expression quantitative trait locus (eQTL)
networks (in which one type of node represents a single nucleotide polymorphism [SNP] and another type of node rep-
resents the expression level of a gene), the network does not represent physical interactions but rather statistical associ-
ations between the SNP dose and gene expression level.

For both unipartite and bipartite graphs, the edges are key components. Because the edges are so important, we
often represent a network as a collection of edges, which can be summarized using an “adjacency matrix”; a matrix that
depicts connections between the nodes in a graph (Figure 1b). The advantage of using such a representation is that it
facilitates mathematical analysis of the network and its properties.

When network science approaches are applied to the analysis of disease, the term “Network Medicine” has been
used (Barabasi, 2007; Barabasi, Gulbahce, & Loscalzo, 2011; Loscalzo, Barabasi, & Silverman, 2017). In many applica-
tions, Network Medicine seeks to use cellular molecular pathways to explore the etiologies of human diseases. How-
ever, since many molecular pathways remain poorly defined, Network Medicine relies on inference or interaction
networks between elements within human cells, and then uses the resulting networks to explore drivers of disease.

A variety of different methods has been used to infer relevant cellular molecular networks. Protein–protein interac-
tion networks, often referred to as the interactome (Vidal, Cusick, & Barabasi, 2011), have been used to identify inter-
connected subsets of interacting proteins related to specific diseases, known as disease network modules. Methods such
as weighted gene coexpression network analysis (Langfelder & Horvath, 2008) use pairwise correlation in gene expres-
sion levels to identify modules of similarly expressed genes in distinct phenotypic states. Still, other methods integrate
multiple different data types to infer regulatory interactions between transcription factors and their targets (Glass,
Huttenhower, Quackenbush, & Yuan, 2013; Sonawane et al., 2017). These modeling approaches based on Big Data can
be thought of as “top-down” efforts to identify genes of interest agnostically in disease-related networks. However, “bot-
tom-up” approaches to build disease networks by identifying the biological relationships and network connections for
well-established susceptibility genes can also be used to create disease-related molecular networks.

Network Medicine applies these integrated approaches to state-of-the-art Omics data and computational biology
tools and, thereby, has the potential to provide improvements in the diagnosis, prognosis, and treatment of complex dis-
eases. We anticipate that improvements in disease diagnosis will have the most immediate impact on clinical medicine.
However, substantial advancements in the analysis, interpretation, and validation of Network Medicine approaches will
be required to turn this potential to transform medical care into reality.

In this review, we discuss the types of molecular data that are used in molecular network analyses, survey the ana-
lytical methods for inferring molecular networks, and review efforts to validate molecular networks. We will review sev-
eral successful applications of molecular network analysis. Finally, we will consider knowledge gaps and future
directions for this developing field.

2 | DATA COLLECTION FOR MOLECULAR NETWORKS

Although computational biologists often do not have extensive training in molecular and cell biology, understanding
the impact of sample collection and storage protocols on the Omics data utilized for building molecular networks is

FIGURE 1 (a) A bipartite graph, in this case

showing eQTL associations. (b) A unipartite graph and

its corresponding adjacency matrix
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essential. Different Omics data types are differentially affected by sample source, sample collection, subject characteris-
tics, and sample storage. Obtaining DNA for assessments of genetic variation is robust to most of these variables, but
other Omics data types (e.g., transcriptomics, metabolomics, proteomics, and epigenetics) can be profoundly altered.
The most readily available sample source is peripheral blood; however, the relevance of blood Omics data for diseases
based in other organ systems is variable. Whole tissue samples (e.g., lung, heart) can provide greater disease relevance,
but the cellular alterations related to disease pathology need to be considered. Individual cell types provide more spe-
cific Omics data but are more difficult to obtain. Subject characteristics of relevance for Omics data include whether the
sample donors were acutely ill or in a stable state. For example, mechanical ventilation of many GTEx donors had a
substantial impact on lung gene expression (McCall, Illei, & Halushka, 2016). For metabolomics, obtaining blood sam-
ples in the fasting state is preferred, although many metabolites can be assessed in nonfasting samples (Townsend
et al., 2013). Key issues related to sample processing include the time from sample collection to freezer storage. Antico-
agulant selection affects proteomic studies in blood samples (Lan et al., 2018), while collecting samples in DMSO can
alter DNA methylation. Increasing numbers of freeze–thaw cycles are problematic for many Omics data types. The tem-
perature of freezer storage (the colder, the better) can also influence sample quality and Omics results.

Generating Omics data from appropriate biospecimens has become commoditized for genetic variation assessment,
using either SNP genotyping panels or DNA sequencing (whole exome or whole genome). Metabolomics assessments
can be performed with targeted panels; untargeted assays can also be performed, but identification of those analytes
can be quite challenging (Gika, Virgiliou, Theodoridis, Plumb, & Wilson, 2019). Epigenomic data are obtained using
profiling techniques analyzing both DNA methylation and histone modifications. DNA methylation marks can be mea-
sured with predefined panels or based on DNA sequencing before and after bisulfite conversion of methylated cyto-
sines. Chromatin accessibility and histone modifications can be assessed with a plethora of different Omics-driven
approaches such as Nome-Seq, ATAC-Seq, and ChIP-Seq, which map nucleosomes and nonhistone proteins and detect
DNA-associated proteins and histone modifications at the genome-wide level. Transcriptomics has largely moved from
microarray analysis to RNA-Seq. Proteomics can be performed with predefined panels of analytes (e.g., Olink,
SomaLogic) or with shotgun mass spectrometry. Each of these platforms has specific challenges that require domain
expertise for appropriate interpretation. For example, DNA methylation panels are affected by SNPs located under assay
probes (W. Zhou, Laird, & Shen, 2017), and analytes in protein panels like SomaLogic can be affected by nonspecific
binding (Joshi & Mayr, 2018).

3 | DATA CLEANING AND NORMALIZATION FOR MOLECULAR
NETWORKS

The many challenges and sources of variability related to Omics data collection directly impact data analysis and inter-
pretation of molecular networks built from those data sets. Even when every effort is made during data collection and
generation, data will be affected by technical noise that can substantially (or even critically) impact the identification of
biological signals.

Some of the most important sources of technical noise are batch effects, which introduce systematic technical vari-
ability in the data (W. W. B. Goh, Wang, & Wong, 2017). Batch effects can result in both the absence of significant
results when genuine biological differences exist (false negatives) and the presence of false positive results that solely
stem from technical variation. Well-known batch effects include day of sample processing and/or data generation,
reagent batches, and operators. The worst-case batch effects are confounding effects, that is, when the batch effect is
completely confounded with the biological factor of interest. Examples of confounding batch effects are when all con-
trol and disease subject samples are processed on two different days or by two different operators, or when all male and
female samples are processed separately in their respective batches. While it is possible to identify and correct for non-
confounding batch effects in data or explicitly to account for this source of variability in statistical tests as explicit
covariates, they are best handled by careful experimental design using blocking, that is, assigning samples to different
experimental batches in a balanced way. Exploratory data analysis and visualization approaches (such as hierarchical
clustering or principal component analysis) can be effective to identify batch effects. In the absence of apparent visual
clues, known genes that are susceptible to batch effects can also be used (Leek et al., 2010). Correction of batch effects
can be effective in well-balanced study designs (i.e., when biological groups are evenly represented across batches) by
using standard normalization (see below) followed by batch correction such as the popular ComBat method (Johnson,
Li, & Rabinovic, 2007), that relies on Bayesian inference to estimate the batch effects. Surrogate variable analysis (SVA;
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Leek & Storey, 2007) uses factors defining the expected biological classes to estimate and correct for sources of variation
that are not associated with the biological factor. Removed unwanted variation (RUV; Gagnon-Bartsch & Speed, 2012)
relies on invariant features, that is, features expected to remain unaffected by the biological factor of interest, to esti-
mate and correct for unwanted batch effects. The application of batch correction methods does, of course, not guarantee
that the undesired variation will be addressed. It is essential to check the corrected data and results to verify that these
are not still influenced by the batch effects. Batch effects are particularly difficult to account for in clinical studies when
the size of the cohort increases and collections span over a long duration, and when the phenotypes of the incoming
patients are random (thus impeaching any design planning until the very end of the collection, leading to long and
varying times from sample collection to processing). In addition to batch correction, it is essential to ensure comparabil-
ity across samples by removing as much of the technical, unwanted variability and leaving relevant, biological variabil-
ity untouched, a procedure called normalization. At times, simple methods such as centering (shifting each sample
distribution toward a common value) and scaling (normalizing the range of the measurements across samples), can suf-
fice. Generally, especially when handling Omics data, techniques that consider all data together and more profoundly
affect the data need to be considered (e.g., quantile (Hicks et al., 2018) and variance stabilization normalizations
(Anders & Huber, 2010; Huber, von Heydebreck, Sueltmann, Poustka, & Vingron, 2003)). In Figure 2, we show in a
tractable example of how the lack of data normalization (for instance, centering and scaling) can substantially alter the
resulting network. We analyzed the expression profiles of five genes (two of which, Genes 3 and 4, are co-expressed,
panel a) across four samples using co-expression networks. The example demonstrates that using absolute gene expres-
sion values (heatmap b and network c) misleadingly groups Genes 3 and 5, and how centering and scaling the gene
expression data (heatmap d and network e) can recover the anticipated clustering of Genes 3 and 4. These results are
comparable to the positive control that uses correlation values between genes to construct heatmap f and network g.

Depending on the Omics technology at hand, a substantial proportion of data points can be missing. Missing data
can be a particularly acute issue for mass spectrometry-based proteomics and metabolomics assays, where both the high
number and the different types of missingness (technical/random and biological/nonrandom) can dramatically influ-
ence how to process the data and the outcomes of an analysis (Lazar, Gatto, Ferro, Bruley, & Burger, 2016). Missing
data can be ignored or statistical imputation approaches can be used to estimate them, but both approaches can lead to
biased analytical results.

In every step of a data analysis procedure, it is advisable to identify outliers (Bittremieux, Meysman, Martens,
Valkenborg, & Laukens, 2016; Kauffmann & Huber, 2010; Norton, Vaquero-Garcia, Lahens, Grant, & Barash, 2018;
Stanfill et al., 2018), including samples or features with an abnormal number of missing values, samples that display
substantially different distributions in their quantitative features, or samples that do not cluster with the rest of their
group. Such cases need to be handled carefully; if the outlying nature of a sample cannot be corrected (through appro-
priate missing data imputation and data normalization, or after correction of mis-annotated samples), the offending
sample might be better removed completely for the subsequent data analysis.

Finally, it is important to highlight that the above steps also hold true when reusing publicly available data (when
performing a meta-analysis combining several data sets, for example) or other resources providing large-scale genomic
information (e.g., accessing protein–protein interaction from the STRING database; Szklarczyk et al., 2015). The ques-
tion that one needs to answer when cleaning and preprocessing Omics data, is whether the data as they stand (raw or
possibly heavily processed) are adequate to address the specific scientific question at hand.

4 | ANALYTICAL APPROACHES FOR MOLECULAR NETWORKS

Many different analytical approaches have been developed for molecular networks. Rather than providing an exhaustive list
of such methods, we focus on describing several major classes of molecular network models, including protein–protein inter-
action networks, gene regulatory networks, correlation networks, Bayesian networks, RNA–RNA networks, and epigenomic
networks, emphasizing the strengths and limitations of available analytical approaches.

4.1 | Protein–protein interaction networks

Specific physical contacts of two or more proteins as a result of biochemical processes are called protein–protein inter-
actions (PPIs). They are steered by noncovalent forces and often occur in a cell-type-specific, condition-specific, and
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organism-specific manner. Manifold wet laboratory technologies exist for their identification, such as affinity purifica-
tion, Y2H (yeast two-hybrid), or TAP (tandem affinity purification; Rao, Srinivas, Sujini, & Kumar, 2014). Through
PPIs, differential protein complex formation and signal flow through the network can be studied in response to chang-
ing internal and external conditions or stimuli. PPI networks are often referred to as the “interactome,” and huge data-
bases have emerged over the last decade of systems biology that store and annotate them for subsequent interrogation
using computational tools. Two examples: (a) The Integrated Interactions Database (IID) stores over 4.8 million PPIs
annotated for tissue-specificity, subcellular localization, disease associations, and druggability (Kotlyar, Pastrello,
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Malik, & Jurisica, 2019); and (b) The STRING database stores over 2 billion PPIs for 5,090 organisms and 24.6 million
proteins (Szklarczyk et al., 2015). The STRING database also includes predicted interactions based, for example, on
homology or text mining, and functional associations in addition to physical ones. PPI networks can be modeled as
matrices or as undirected graphs where vertices correspond to proteins and edges to (physical or functional) interac-
tions which can be weighted (usually with confidence scores or p values). Many approaches for clustering and cross-
species or cross-condition comparisons of such networks have been developed (cf. Bader & Hogue, 2003; Malek,
Ibragimov, Albrecht, & Baumbach, 2016). Invaluable in a systems and Network Medicine context have proven so-called
network enrichment methods, which usually aim at co-clustering an expression data set gathered for a set of patients
suffering from a certain disease compared to a control group having a differential clinical outcome. Here, the aim is to
identify subnetworks enriched with genes or proteins that are significantly altered in their behavior (e.g., differentially
expressed, methylated, or mutated). Such subnetworks are candidate disease mechanisms and may be used as mecha-
nistic markers for endophenotyping (Zanin et al., 2019). Many such network enrichment tools have been developed
over the last decade and are now applied to the identification of disease mechanisms. Examples include DEGAS
(Ulitsky, Krishnamurthy, Karp, & Shamir, 2010), KeyPathwayMiner (List et al., 2016), HOTNET (Vandin, Clay, Upfal, &
Raphael, 2012), or GrandForest (Figures 3 and 4). All such network module detection approaches come with different
advantages and disadvantages that depend on biomedical assumptions regarding the underlying disease mechanisms
and the available Omics data types (Batra et al., 2017; Nikolayeva, Guitart Pla, & Schwikowski, 2018). Currently, avail-
able PPI networks are usually studied in the context of gene expression or genetic variation data. Few approaches exist
for the analysis of alternative splicing in the context of PPIs (Emig et al., 2010), as this would require structural knowl-
edge about the PPIs to identify spliced exons and corresponding protein domain variations. Such information is, how-
ever, only available for comparably small numbers (<10,000) of PPIs, for example, in Instruct (Meyer, Das, Wang, &
Yu, 2013). Static PPI networks often do not allow for inferring causality, as they are undirected and have no annotation
regarding activation or repression; this is in contrast to dynamic responses of PPIs to perturbation or to gene regulatory
networks, which can be interrogated regarding their power to explain the emergence of different phenotypes on an
expression level (S. J. Larsen, Rottger, Schmidt, & Baumbach, 2019).

Based on the hypothesis that proteins relevant for a particular disease will be localized (rather than randomly
scattered) throughout the molecular interactome, multiple approaches have been developed to identify disease network

FIGURE 3 The main principle of PPI network enrichment for mechanistic biomarker extraction, supervised (left), and de novo/

unsupervised (right). In a supervised setting, one is interested in finding a set of proteins/genes that explain the difference between two or

more classes (e.g., disease subtypes) by the alteration of a set of genes or proteins that form a subnetwork of the interactome. The labels do

not necessarily need to be discrete but can be continuous observations or outcomes such as disease progression, growth responses, growth

rate, treatment effects, or survival. In an unsupervised setting, no labels are given but the existence of subtypes (called endophenotypes) is

assumed, which is characterized by given Omics data. This image is a screenshot from the GrandForest webtool (S.J. Larsen, Schmidt, &

Baumbach, 2020), which identifies disease classes and sub-types (de novo) while, conjointly, explaining this stratification with differential

sub-network expression. The sub-networks then are enriched with mechanistic candidate biomarkers
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modules within the PPI network (L. Y. Lee & Loscalzo, 2019). Seed genes can be selected based on genome-wide associ-
ation studies (GWAS) or other reductionist experimental evidence to guide disease module identification using random
walk or other approaches to interrogate the interactome (Erten, Bebek, Ewing, & Koyuturk, 2011; Navlakha &
Kingsford, 2010). Alternatively, all of the genetic association evidence in a GWAS can be used to prioritize disease net-
work modules (Ghiassian, Menche, & Barabasi, 2015; Jia, Zheng, Long, Zheng, & Zhao, 2011; Petti, Bizzarri, Verrienti,
Falcone, & Farina, 2019).

4.2 | Gene regulatory networks

Gene regulation involves the complex interplay of multiple biological molecules. The transcriptional process starts with
the coordinated activity of multiple regulatory proteins, known as transcription factors (TFs), which bind to specific
control regions in the DNA and then work together to recruit RNA polymerase (RNAP; Lambert et al., 2018). After
recruitment, RNAP transcribes a gene, producing mRNA, which is then translated into protein. Additional factors, such
as microRNAs and other epigenetic modifiers, are also involved in this process and can influence the amount of mRNA
transcribed and the amount of protein translated (T. I. Lee & Young, 2013). Gene regulatory networks model transcrip-
tional processes by connecting regulators (such as TFs) to the genes encoding the downstream products of transcription
and/or translation (mRNA and/or proteins, respectively; Sonawane et al., 2017). Importantly, a subset of the target
genes in these networks encode TFs, creating a complex set of interactions that can be studied to understand the pro-
cesses that control how a cell responds to environmental factors and to determine how the mechanisms controlling
gene transcription are altered in the context of disease (Baumbach, Tauch, & Rahmann, 2009; Baumbach, Wittkop,
Kleindt, & Tauch, 2009).

FIGURE 4 The principle of the GrandForest webtool network enrichment approach. Given a (labeled) Omics data set (e.g., gene

expression) and a PPI network, the tool learns decision trees just like in a classical Random Forest but restricts the decision tree growing to

only pick proteins that are adjacent (in the network) to at least one previously picked feature protein. This way, all decision trees in the

forest model by-design represent subnetworks of the interactome. They can be sorted by feature importance (e.g., using Gini index). The top

m genes (user parameter) are located in the input network and the induced subnetwork is reported and visualized as a candidate mechanism

driving the phenotype of interest. Importantly, GrandForest can identify subnetworks where many genes are not significant individually but

become significant only as a mechanistic marker ensemble (S.J. Larsen et al., 2020)

8 of 38 SILVERMAN ET AL.



Much of the early work in modeling regulatory networks leveraged gene expression data to draw connections
between TFs and genes based on linear (de la Fuente, Bing, Hoeschele, & Mendes, 2004) or nonlinear (Faith
et al., 2007; Margolin et al., 2006) correlations in their expression profiles (De Smet & Marchal, 2010; Marbach
et al., 2012). However, it soon became clear that gene regulatory networks estimated solely from gene expression data
could not distinguish between direct and indirect regulatory events (Marbach et al., 2010), at least partially because
gene co-regulation (i.e., a pair of genes regulated by the same TF) often has similar or stronger expression correlation
than direct regulation of a gene by a TF (Ku, Duggal, Li, Girvan, & Ott, 2012). This observation led to the development
of network reconstruction algorithms that incorporate multiple sources of data (Chang et al., 2008; Conlon, Liu, Lieb, &
Liu, 2003; Hecker, Lambeck, Toepfer, van Someren, & Guthke, 2009). For example, interactions between TFs and genes
can be derived by scanning the control regions of genes for sequence patterns that correspond to potential TF binding
sites. In isolation, these interactions lack biological context, generally contain many false-positives (spurious network
edges), and are limited by the availability of information regarding the binding preferences of TFs. These estimates can
be combined with epigenetic data assessing chromatin state in order to create context-specific networks (Beyer
et al., 2006; Gerstein et al., 2012; Neph et al., 2012; Pique-Regi et al., 2011); however, the resulting models often suffer
from a high number of false-negatives (missing network edges). One significant appeal of these approaches is their
potential to incorporate distal information into gene regulatory networks, although currently, the effective and accurate
association of enhancers with genes remains an outstanding problem in the field of computational biology.

Statistical approaches have also been applied to model gene regulatory networks. These approaches fall into two
main classes: (a) regression-based approaches, which estimate regulatory interactions by modeling each gene's expres-
sion level as a linear combination of the expression levels of its potential TF regulators (Haury, Mordelet, Vera-
Licona, & Vert, 2012); and (b) classification-based approaches, which add and remove regulatory interactions by
comparing each gene's expression profile to the expression profiles of other genes that are, or are not, targeted by a par-
ticular TF (Ernst et al., 2008; Mordelet & Vert, 2008). These statistical approaches, although powerful, essentially solve
a series of independent problems, presenting challenges for assimilating their results into a single, coherent gene regu-
latory network. One method that overcomes this limitation is Passing Attributes between Networks for Data Assimila-
tion (PANDA; Glass et al., 2013), which uses a message-passing approach (Frey & Dueck, 2007) to integrate
information regarding TF complexes, TF targeting of genes, and gene co-regulation. PANDA works by performing a
series of network projections to optimize shared structures across these input data and to uncover TF and gene
targeting patterns. PANDA has been successfully applied in multiple different disease contexts, including ovarian
cancer (Glass, Quackenbush, Spentzos, Haibe-Kains, & Yuan, 2015), colorectal cancer (Lopes-Ramos et al., 2018), diet-
induced weight-loss (Vargas, Quackenbush, & Glass, 2016), chronic obstructive pulmonary disease (COPD; Glass
et al., 2014; Lao et al., 2015), and asthma (Qiu et al., 2018), as well as to study gene regulatory networks in multiple
human tissues (Sonawane et al., 2017) and cell lines (Lopes-Ramos et al., 2017).

Gene regulatory networks that are inferred from data are often directed, with edges that extend from a regulator—
such as a transcription factor—to a target gene, as well as weighted, with scores reflecting the overall evidence for a reg-
ulatory relationship. These two features make regulatory networks excellent models of biological processes, which are,
by definition, directed and also may have varying levels of importance depending on biological context (Sonawane
et al., 2017). In principle, gene regulatory networks should also be signed to convey information regarding transcrip-
tional activation or inhibition. Although these types of relationships have been carefully curated at a genome-wide level
for some smaller organisms, such as E. coli (Gama-Castro et al., 2016), they cannot be easily measured using high
throughput methods. Thus, due to the scale and complexity of higher-order mammalian systems, signs are generally
only considered when investigating well-studied subsets of human gene regulatory relationships, such as those reported
in pathway databases (Kanehisa, Furumichi, Tanabe, Sato, & Morishima, 2017).

4.3 | Correlation networks

Correlation-based networks and their graph theory-based properties have been successfully used to summarize and
understand large data sets generated in biological and medical studies (Batushansky, Toubiana, & Fait, 2016; D. Yu,
Kim, Xiao, & Hwang, 2013). Correlation networks are based on the calculation of pairwise correlation coefficients
between the data associated with a pair of nodes (usually Pearson or Spearman coefficients, Kendall's tau, or Mutual
Information). Since these correlation values are generally nonzero (i.e., the network is complete), it is necessary to
impose a hard or soft threshold on the correlation coefficient values to remove spurious relationships and, thus, focus
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on significant associations between highly correlated nodes (Schwarz & McGonigle, 2011; Zhan et al., 2017). Hard-
thresholding approaches create binary networks where sub-threshold inter-node correlations are suppressed (edge
values set to 0), and supra-threshold correlations are compressed (edge values set to 1). Alternatively, soft-thresholding
approaches replace thresholding with a continuous mapping of correlation values into edge weights, which has the
effect of suppressing rather than removing weaker network connections. Pearson correlation is the most widely used
statistic to measure the degree of the linear relationship between two normally distributed variables. Alternatives
include Spearman and Kendall's tau correlations, which do not require any assumptions about the distribution of the
data and measure the statistical association between two variables based on their ranks. These three measurements can
take values ranging from −1 to +1. Finally, mutual information is a generalized correlation measure used to assess the
nonlinear dependence between two random variables. It is always larger than or equal to zero: The larger the value, the
greater the relationship between the two variables. Mutual information is zero when the two variables are independent.

Correlation networks are frequently used to analyze gene expression data (referred to as gene co-expression net-
works) and to gather biologically relevant information from genes with similar co-expression patterns (Fiscon, Conte,
Farina, & Paci, 2018). Gene co-expression networks are fertile fields for mining information about key genes and funda-
mental drivers of gene expression in a cellular system. Currently, two of the most promising algorithms for gene co-
expression networks are SWItch Miner (SWIM; Paci et al., 2017) and Weighted Gene Correlation Network Analysis
(WGCNA; Langfelder & Horvath, 2008; B. Zhang & Horvath, 2005). SWIM builds an unweighted correlation network
(hard-thresholding) and exploits local and global graph properties to mine genes, called switch genes, which suggest
association with drastic changes in cellular phenotype, such as in cancer development. WGCNA builds a correlation
network that can be weighted (soft-thresholding) or unweighted (hard-thresholding) and identifies relevant genes by
measuring the centrality of a gene within the network. WGCNA also permits incorporation of external sample informa-
tion (like physiological, metabolic, and clinical traits) to screen for modules and intramodular hubs that relate to a sam-
ple trait, thus suggesting possible key roles of a specific network module in the phenotypic characterization. However,
WGCNA considers only the right tail (i.e., positive correlation between gene pairs) of the correlation distribution.

To date, the left tail (i.e., negative correlation between gene pairs) of the correlation distribution, and the interpreta-
tion of negative edges within a complex network representation of functional connectivity, has largely been ignored,
apart from the SWIM methodology. Indeed, it is known that the human genome is pervasively transcribed (ENCODE
Project Consortium et al., 2007), yet at any given spatial/temporal state a cell generally uses only a fraction of its gene
functions. This observation suggests a crucial role of negative regulation to save cells from activation of specific path-
ways and cell functions in response to specific external stimuli or physiological and/or pathological changes. As an
example, microRNAs are now universally recognized as key negative regulators in many intracellular processes as well
as in cancer development and progression (Calin & Croce, 2006; X. Zhou, Xu, Wang, Lin, & Chen, 2015). The strength
of SWIM is to emphasize the importance of negative regulation by explicitly considering also the left tail of the correla-
tion distribution.

Correlation networks have also been successfully used to study complex diseases, comorbidity, and disease progres-
sion. Complex diseases (e.g., diabetes, stroke, cancer, etc.) are often considered as syndromes composed of overlapping
individual diseases or phenotypes that manifest a similar pathological or physiological outcome. To understand how
diseases are connected, the first Phenotypic Disease Network (PDN) was introduced as a map summarizing phenotypic
connections (comorbidity correlations obtained from the disease history of more than 30 million patients) between dis-
eases (nodes; Hidalgo, Blumm, Barabasi, & Christakis, 2009). The authors showed that diseases progress preferentially
along with the links of this map; in particular, this progression is different for patients of different genders and ethnici-
ties, and patients affected by diseases that are connected to many other diseases in the PDN tend to die sooner than
those affected by less connected diseases. Later, a phenomenological comorbidity network based on medical claims data
of the entire population of Austria was proposed (Chmiel, Klimek, & Thurner, 2014). This network was constructed
from a two-layer multiplex network of two statistical measures quantifying relations between diseases. In contrast to
the PDN proposed by Hidalgo et al. (Hidalgo et al., 2009), this network was based on a combination of measures
(i.e., conditional probabilities for a comorbidity and respective contingency coefficients) that have been corrected for
biases that result from the comparison of very rare and frequent diseases. The authors showed that the disease network
undergoes dramatic structural changes across the lifetime and that patients predominantly develop diseases that are in
close network proximity to disorders that they already suffer. A different approach was developed to investigate multi-
ple disease-related phenotypes within one complex disease; Chu et al. (2014) developed a method for constructing net-
works of phenotypic variables (nodes) based on partial correlations between quantitative, disease-related phenotypes
(edges). Specifically, using COPD as an example, these investigators described the application of network inference

10 of 38 SILVERMAN ET AL.



methods to explore the relationships between disease-related phenotypes, and they showed that the proposed approach
allows detection of novel relationships that would not have been observed in a single variable analysis. A further exam-
ple of a complex disease studied with correlation network analysis is provided by Nishihara et al. (2017), where the
authors investigated the carcinogenic process in colorectal carcinoma. They proposed to model the complex process that
encompasses a multitude of molecular events (e.g., somatic mutations, epigenetic alterations, and aberrant protein
expression) with a biomarker correlation network wherein a node represents a tumor tissue biomarker (e.g., somatic
mutation, methylation level, immune reaction, or protein expression) and an edge between two nodes occurs if the
associated biomarkers exhibit a statistically significant Spearman correlation. Such a network analysis integrates multi-
dimensional tumor biomarker data and allows identification of key molecular events and pathways that are central to
an underlying biological process.

A limitation of gene co-expression correlation-based networks is that the effect of an expressed gene on a disease
phenotype requires that its encoded protein binding and pathway partners be co-expressed (Kitsak et al., 2016). This
requires knowledge of the PPI for optimal interpretation, as purely regulatory interactions may not be informative in
this regard. Ideally, differentially expressed genes can be mapped to the PPI to create a “reticulotype” for a disease mod-
ule of interest that is specific to an individual or a limited number of individuals with that disease phenotype. Such an
approach moves the field ever closer to personalized precision medicine (L. Y. Lee & Loscalzo, 2019).

4.4 | Bayesian networks

Bayesian networks are powerful models whose structure is determined directly from data that measure the values of
variables across a series of samples, conditions, or states. More formally, Bayesian networks are directed acyclic graphs
whose nodes are random probabilistic variables with values that describe variation across a set of states. The edges in a
Bayesian network model the dependencies between variables, with the conditional probability distributions of each var-
iable encoded by the network structure. In particular, the values taken by a node in a Bayesian network are modeled as
a distribution that is conditioned on that node's parents, but independent of its nondescendants given its parents. Thus,
the edges in these models ultimately can represent the influence of a number of both detected and undetected factors,
providing an appealing framework with which to characterize relationships between variables despite imperfect knowl-
edge and incomplete data, features commonly encountered in real-world Network Medicine applications.

Two main classes of methods are used to reconstruct the structure of Bayesian networks: Constraint-based
approaches (Natori, Uto, Nishiyama, Kawano, & Ueno, 2015) and score-based algorithms (Andrews, Ramsey, &
Cooper, 2018). Whereas the former uses conditional independence tests to determine dependency structures in the data,
the latter maximizes an objective function based on goodness-of-fit scores (Friedman, Linial, Nachman, & Pe'er, 2000;
Vignes et al., 2011). Score-based methods seek to identify the best network structure by optimizing a scoring function,
and thus are more computationally expensive compared to constraint-based approaches, which relax this criterion.
Although this relaxation results in lower accuracy models, it also allows for learning larger networks. It is important to
note that with prior knowledge regarding the topological ordering of the network and the use of entropy to assess con-
ditional independence and goodness of fit, constraint-based and score-based approaches learn the same network struc-
ture (Cowell, 2001). There are also hybrid methods which combine aspects of both constraint-based and score-based
approaches (Scutari, Graafland, & Gutierrez, 2019). Two important aspects to consider when modeling Bayesian net-
works include parameter estimation and structural learning. Parameter estimation involves learning the conditional
probability distributions based on the data given a known network structure (Ji, Xia, & Meng, 2015). Structural learning
involves learning both the network structure and the parameters by combining a statistical criterion with an algorithm
that determines how to apply that criterion to the data (Scanagatta, Salmeron, & Stella, 2019).

Bayesian networks often capture subtle relationships, producing realistic models of the pathways that control dis-
ease development and progression. Bayesian network analysis has been applied in a number of biological contexts. An
early application in yeast gene expression data generated a highly predictive model of cell cycle mechanics (Friedman
et al., 2000), demonstrating the power of the approach. Due to the size and complexity of the data, applications using
human gene expression data often require constraining the model search space based on a preliminary set of network
topologies (Hartemink, Gifford, Jaakkola, & Young, 2002; Imoto et al., 2004; Le Phillip, Bahl, & Ungar, 2004). With
these modifications, Bayesian networks have been used to study a variety of related problems, such as the reconstruc-
tion of gene regulatory networks from the scientific literature (Gevaert, Van Vooren, & De Moor, 2007) and gene
expression data (Husmeier, 2003; Husmeier & Werhli, 2007). More recent work in Bayesian networks includes the
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development of tools that support integrative and multi-modal data analysis, such as bootstrapping to reduce reliance
on outliers, and the implementation of multiple search and validation algorithms (McGeachie, Chang, & Weiss, 2014).
These advances have led to the application of Bayesian networks to multiple different Omics data types, such as micro-
RNA (McGeachie et al., 2017), metabolomics (Rogers et al., 2014), and microbiome data (McGeachie et al., 2016). An
application of Bayesian networks to the integration of metabolomic, genomic, and methylation data implicated meta-
bolic pathways in the pathophysiology of asthma control (McGeachie et al., 2015). Bayesian approaches have also been
applied to model gene regulatory networks based on conditional mutual information (Aghdam, Ganjali, Zhang, &
Eslahchi, 2015; X. Zhang, Zhao, Hao, Zhao, & Chen, 2015). Dynamic Bayesian networks have been utilized to create
weighted directed networks, which can utilize longitudinal Omics data to create time-varying regulatory networks of
activation or inhibition events (Z. Wang, Guo, & Gong, 2018).

Despite their appeal and many successful applications, Bayesian network models have several well-known limita-
tions. First, Bayesian networks are computationally complex and thus best applied to efforts to understand relationships
between a relatively small number of variables. Resolving the structure of a Bayesian network is a nondeterministic
polynomial time (NP)–hard problem (Chickering, 1996). To overcome this limitation, prior information can be used to
“seed” the network structure and limit the search space (Djebbari & Quackenbush, 2008). Second, Bayesian networks
are structured as directed acyclic graphs. Thus, their application in modeling cellular processes, which often involve
cyclic features such as feedback loops, requires modifications to the standard framework. Extensions to Bayesian net-
works that incorporate cyclic structures include factor graph approaches (Gat-Viks, Tanay, Raijman, & Shamir, 2006)
and dynamic Bayesian networks (Husmeier, 2003; Kim, Imoto, & Miyano, 2003; J. Yu, Smith, Wang, Hartemink, &
Jarvis, 2004; Zou & Conzen, 2005).

4.5 | RNA–RNA networks

RNA plays a central role in physiological functions of every living organism, as described by Walter Gilbert in 1986
(Berget, Moore, & Sharp, 1977; Chow, Gelinas, Broker, & Roberts, 1977; Gilbert, 1986; R. C. Lee, Feinbaum, &
Ambros, 1993; Reinhart et al., 2000). Since then, high throughput genome-wide studies by the Encyclopedia of DNA
Elements (ENCODE) and Functional Annotation of Mammals (FANTOM) projects have revealed that 98% of the
human genome is pervasively transcribed and only 2% of the RNAs encode proteins (Lizio et al., 2019; Pazin, 2015).
These results have triggered a plethora of studies on epigenetic functions of noncoding RNAs (ncRNAs) in human phys-
iology and pathobiology in the last 20 years. The ncRNAs are classified, according to their length, into small RNAs
(miRNAs, piRNA, siRNAs, snRNAs, snoRNAs, and tRNAs) and long noncoding RNAs (lncRNAs); the latter includes
circular RNAs as well. All of these RNAs are intricately interconnected in biological regulatory networks (Holoch &
Moazed, 2015).

Ever-increasing evidence suggests that many genomic mutations reside in noncoding regions that perturb RNA–
RNA interactions, leading to different diseases (Shah et al., 2018; Yuan & Weidhaas, 2019). Such interactions are epito-
mized by the competing endogenous RNA (ceRNA) hypothesis, in which lncRNAs function as they bind to miRNAs
and consequently regulate the expression of messenger RNAs (mRNAs; Anastasiadou, Jacob, & Slack, 2018; Salmena,
Poliseno, Tay, Kats, & Pandolfi, 2011). Furthermore, ncRNAs interact not only with each other but also with proteins
and DNA, which are interconnected in diverse regulatory networks. Therefore, a better understanding of RNA–RNA
interactions is of fundamental importance in Network Medicine (Barabasi et al., 2011; L. Y. Lee & Loscalzo, 2019; Tay,
Rinn, & Pandolfi, 2014).

Data-driven methodologies help to shed light on ncRNA network involvement in human disease (Ristevski &
Chen, 2018). One of the most versatile data mining tools is the Gene Expression Omnibus database repository (GEO),
containing high throughput gene expression data, and the BioPortal database repository, which provides biomedical
ontologies (Clough & Barrett, 2016). One way to study an RNA–RNA network in a particular disease takes into account
the pipeline to analyze mRNA, miRNA, and lncRNA datasets from the GEO. Indeed, a recent study analyzed differen-
tial expression of these RNAs in spinal cord injury (SCI) and normal samples (L. Wang, Wang, Liu, & Quan, 2019). The
raw data analysis, performed either by using the Linear Models for Microarray Data (LIMMA) package or the Mor-
pheus platform, was used respectively to identify statistically significant deregulated mRNAs and differentially
expressed miRNAs and lncRNAs (Gentleman et al., 2004). Differential expression data were matched based on their
complementarity to assess the predicted interactions between mRNA-lncRNA, mRNA-miRNA, and lncRNA-miRNA.
After an accurate and unbiased analysis, the RNA interactions were placed in a network using Cytoscape software.
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From this analysis, a ceRNA network was unraveled, which included 93 mRNA, 9 miRNA, and 13 lncRNA nodes with
a total of 202 edges. Additionally, the FunRich software was used to analyze biological functions, molecular pathways,
clinical phenotypes, transcription factors and protein domains related to all mRNA, miRNA, and lncRNA nodes. Based
on the degree of a node, as indicated by the number of mRNA, miRNA, and lncRNA neighbors, the authors identified
three of the 13 lncRNA nodes and their corresponding three sub-ceRNA networks as potential biomarkers and thera-
peutic targets for SCI. Such pipeline data analysis provides further insights into how lncRNAs interact with other RNA
species to form a molecular network. A similar approach could be employed for identification of RNA–RNA interac-
tions in other human diseases.

Among computational methods describing miRNA–sponge interactions (ceRNAs) through a network-based
approach (Le, Zhang, Liu, & Li, 2017), the method proposed by Paci, Colombo, and Farina (2014) has been ranked as
most effective in identifying the number of ncRNA interactions associated with breast cancer. Specifically, based on a
partial correlation model, the authors investigated the role of lncRNAs as miRNA sponges and built miRNA-mediated
interaction (MMI) networks, where nodes represent ceRNAs (lncRNA or mRNA) and edges represent miRNAs that are
mediating their interaction, in human breast invasive carcinoma (BRCA). The results revealed the lncRNA, PVT1 (Pvt1
Oncogene), as the first hub of the BRCA MMI-network. More than 80% of microRNAs sponged by PVT1 corresponds to
the mir-200 family, whose importance in breast cancer is related to the epithelial-mesenchymal transition.

The above studies on RNA–RNA interactions demonstrate the importance of these networks for the identification
of disease-driven RNA as potential diagnostic biomarkers and therapeutic targets. Notwithstanding the importance of
an accurate and unbiased RNA–RNA network analysis in health and disease, the critical importance of experimental
validation by cell-based approaches and animal models should not be underestimated.

4.6 | Epigenomic regulatory networks

In the era of precision medicine, epigenomics has acquired a key role in revealing how epigenetic modifications can be
utilized to identify diagnostic biomarkers and/or new therapeutic targets. Epigenomics analyzes overall epigenetic mod-
ifications within the genome of the cell.

Epigenetic regulation is the result of different modification pathways that affect DNA either directly (DNA methyla-
tion) or indirectly, through post-translational modifications of histone proteins, nucleosome positioning, and chromatin
accessibility of regulatory regions to DNA binding proteins (Z. Chen, Li, Subramaniam, Shyy, & Chien, 2017). Accord-
ingly, epigenetic modifications coordinately establish the transcriptional program of cells and, together with integration
methods of genomic, transcriptomic, and proteomic data, are crucial to understand fully the regulatory mechanisms
underlying complex diseases (Robinson & Pelizzola, 2015). The epigenome is highly dynamic.

Epigenomic patterns are tightly regulated by both genetic and environmental factors that ultimately establish differ-
ent clinical phenotypes (Allis & Jenuwein, 2016). In recent years, a considerable amount of epigenetic data have been
produced using several epigenetic analysis techniques aimed at finely characterizing both DNA methylation (Whole
Genome Bisulfite Sequencing, MeDip, pyrosequencing, MSRE/MRE-Seq), chromatin accessibility and histone modifica-
tions (ChIP-Seq, Nome-Seq, ATAC-Seq), and chromosome conformation capture (3C, 4C, 5C, Hi-C). High-throughput
sequencing technology has extended the body of epigenetic information at genome-wide scale. Major efforts are cur-
rently underway to establish data annotation protocols (for data standardization) and computational methods for epi-
genomic analysis by making use of databases and software tools for statistical analysis, data integration, and functional
annotation.

Several data repositories and browsers are currently available thanks to the endeavors of Big Data consortia.
ENCODE, the International Human Epigenome Consortium (IHEC), NIH Roadmap, Blueprint, and others have made
available epigenetic profiling datasets as well as standardization of protocols and sample preparation for both healthy
and disease states of different cell lineages and tissues (Bernstein et al., 2010; Bujold et al., 2016; Davis et al., 2018; Mar-
tens & Stunnenberg, 2013; The BLUEPRINT Consortium, 2016). In parallel, a remarkable number of epigenomic data-
bases, tools, and data storage systems has allowed the storage and visualization of epigenomic datasets of different
sample groups (Han & He, 2016). Among these, the Human Epigenome Browser (X. Zhou et al., 2011) and UCSC
Genome Browser (Kent et al., 2002) provide resources and tools for epigenetic data mining and annotation.

In complex diseases, the epigenomic profile results from the interplay between genetic and environmental factors.
Thus, integrating epigenomics data in different pathological contexts represents an important step toward effectively
defining and treating multifactorial diseases. Epigenome-wide association studies (EWAS) identify epigenetic marks
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associated with a specific phenotype. Several web tools such as the Human EpiGenome Browser (X. Zhou et al., 2011)
and coMET (Martin, Yet, Tsai, & Bell, 2015) are used to visualize different epigenetic profiles by phenotype. A more
comprehensive view of the functional implications of EWAS associations can be exploited using gene ontology, path-
way, and network analysis tools. Ingenuity Pathway Analysis (IPA©, QIAGEN) explores biological networks, functions,
and associated diseases of EWAS associations (Kramer, Green, Pollard Jr., & Tugendreich, 2014), while Locus Overlap
Analysis (LOLA) provides genomic region enrichment analysis to interpret functional genomics and epigenomics data
(Sheffield & Bock, 2016). Genomic Regions Enrichment of Annotations Tool (GREAT) is another powerful tool able to
correlate data sets from ChIP-seq or, more generally, from DNA binding of cis-regulatory DNA regions with biological
processes (McLean et al., 2010). Several network-based methods and tools such as eFORGE and ChromHMM are able
to predict chromatin states from epigenetics data (Breeze et al., 2016; Ernst & Kellis, 2017).

Data integration approaches aimed at functionally annotating specific traits associated with epigenetic associations
are now being developing by exploiting the possibility to predict chromatin states and establish links with gene expres-
sion (Claussnitzer et al., 2015). Few bioinformatics tools are currently available to combine and model multi-omics data
and networks. Significance-based Modules Integrating the Transcriptome and Epigenome (SMITE) integrates trans-
criptomics and epigenomics data at high resolution, increasing confidence in finding gene modules underlying cellular
pathophysiology (Wijetunga et al., 2017). SMITE may be used to identify novel gene modules in large epigenetic and
transcriptomic data sets and provide a more useful characterization and visualization of functional modules inside a
gene network. BioWardrobe is another user-friendly platform that stores, visualizes, and analyzes epigenomics and
transcriptomics data, without requiring any particular programming skills (Kartashov & Barski, 2015). This tool corre-
lates differential gene expression with binding analysis and creates average tag-density profiles and heatmaps.

Several studies represent valuable examples of the use of integrated epigenomic approaches to dissect complex dis-
ease. Claussnitzer revealed a mechanistic basis for the genetic association between FTO and human obesity
(Claussnitzer et al., 2015), identifying the rs1421085 T-to-C single-nucleotide variant of the FTO gene as the single-
nucleotide variant (SNV) responsible for dysregulation of target genes with a functional role in human obesity. The
authors combined public resources for epigenomic annotations, chromosome conformation assays, and regulatory motif
conservation. The data indicated that rs1421085 disrupts ARID5B repressor binding resulting in de-repression of IRX3/
IRX5 during early adipocyte differentiation. In another study based on the International Cancer Genome Consortium,
Beekman et al. (2018) analyzed the epigenome of seven chronic lymphocytic leukemias (CLLs) and the chromatin land-
scape of another 100 additional cases previously characterized by whole-genome or whole-exome sequencing
(WGS/WES), RNA-seq, and DNA methylation microarrays. These authors identified de novo reprogrammed regulatory
regions associated with the development of CLL and its main clinical subtypes with diagnostic, prognostic, and poten-
tially therapeutic value. The comprehensive dataset provided by the authors offered new insights into the biology and
clinical behavior of CLL, representing a resource for the scientific community into the study of gene regulation, cell dif-
ferentiation, and cancer genomics or epigenomics.

A summary of the major molecular network types reviewed in this section is provided in Table 1.

5 | LABORATORY VALIDATION OF MOLECULAR NETWORKS

As discussed in previous sections, the analysis of molecular networks combines data from different sources: Protein–
protein interaction networks are derived mostly from yeast two-hybrid systems and tandem affinity purification assays,
whereas networks based on correlations between gene expression levels may not capture causal relationships (Celaj
et al., 2017; Snider et al., 2015). Therefore, the conclusions drawn from the analysis of Omics data, whether based on
publicly available datasets or correlations within a set of human samples, should be experimentally validated. If the dis-
ease under investigation has an animal model or a tissue or a cellular model (e.g., stem cells derived from patients),
these could be interrogated to verify the existence of the network identified in silico. Specifically, if a subnetwork of
interacting proteins exists, its experimental perturbation (pharmacologically, by siRNA, or genetically) should lead to a
change in a disease-relevant phenotype.

The Network Medicine approach to build networks from pair-wise molecular interactions (Kyoto Encyclopedia of
Genes and Genomes [KEGG]) and other high throughput approaches (e.g., brain imaging, connectomics, functional
Magnetic Resonance Imaging [fMRI], etc.) can be combined with information gathered by high throughput techniques
from cellular models (e.g., interactome or protein–protein interactions, kinase perturbation databases, phosphatase sub-
strates, Reactome, druggome, etc.), in addition to extensive tissue protein expression databases, tissue atlases or
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annotated databases that consider protein functions (e.g., gene ontology). Consequently, experimental validation of net-
work models represents an important step toward the development of precision medicine (Doncheva, Kacprowski, &
Albrecht, 2012; Loscalzo & Barabasi, 2011). Two approaches have been considered to validate reliably the physiological
relevance of target genes and pathways in a given network: Animal models and cell-based approaches. However,
selecting the appropriate model system and perturbation for network validation can be challenging. Molecular net-
works may vary between cell types, so selecting a cell type relevant for the disease of interest is helpful. The relevance
of a particular animal model for human disease needs to be considered. In addition, a subset of key network relation-
ships, rather than the entire network, is typically considered for validation due to the expense and logistical challenges
of performing large-scale cellular and animal model functional studies.

5.1 | Animal models

An integral part of the Network Medicine approach should aim to define which gene-targeted animal model most effec-
tively recapitulates a certain human disease. Although most complex diseases are polygenic, gene-targeted animal
models focused on single genes often recapitulate key aspects of a complex disease. Table 2 provides examples of animal
models of disease including attention deficit hyperactivity disorder (ADHD), anxiety/depression, memory dysfunction/
dementia, Type 1 and Type 2 diabetes, nephrotic syndrome, obesity, and cancer.

Obtaining an accurate estimate of the number of genes responsible for a polygenic disease is problematic for several
reasons: (a) in some instances (such as ADHD), the previously reported candidate gene associations (in contrast to
large-scale genome-wide association studies) often have questionable validity; and (b) the number of genetic loci is not
equivalent to the number of different genetic subgroups; there can be multiple functional variants at each locus, and
even if discrete subgroups can be identified, they likely relate to multiple genetic variants. These limitations are also
present in general when trying to infer molecular networks in human subjects. However, notwithstanding these limita-
tions, it is interesting to analyze an estimate of the number of genes/genetic loci in each of these situations and compare
it to the number of available genetic animal models.

TABLE 1 Overview of the types of networks often used in analytical analysis for Network Medicine applications

Network type Structure Nodes
represent

Edges represent Typically derived from Primary use(s)

Protein–protein
interaction

Undirected;
unipartite

Proteins Physical or functional
protein interactions

Affinity purification,
yeast two-hybrid,
tandem affinity
purification

Disease module detection

Gene
regulatorya

Directed;
bipartite

Transcription
factors and
genes

Regulation of genes by
transcription factor
proteins

DNA sequence scan,
ChIP-assays, reverse-
engineered from
expression data

Modeling and
identification of
alterations to
regulatory processes

Correlationb Undirected;
unipartite

Genes/
mRNAs

Correlation in mRNA
levels of genes

Expression data Mining information
about key genes and
identifying drivers of
gene expression

Bayesian Directed;
acyclic

Variables Dependency between
variables

Measurements across a
series of variables

Modeling relationships
between variables

RNA–RNA Directed;
Multipartite

RNA species Regulation of RNA (e.g.,
lncRNA regulates
miRNA; miRNA
regulates mRNA)

Expression data
combined with
regulatory
information

Identification of potential
diagnostic biomarkers
and therapeutic targets

aEpigenomic data can be integrated into gene regulatory networks to construct epigenomic regulatory networks. This
additional layer of information can aid in the identification of biomarkers and therapeutic targets.
bCorrelation networks can also be constructed between other types of biological molecules using other types of Omics
data. For example, a correlation network of metabolites can be constructed using metabolomics data.
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Keeping in mind these limitations, as detailed in Table 2, many complex human diseases have a polygenic origin
based on GWAS and next-generation sequencing data, and only few present a monogenic familial origin. In contrast,
transgenic and knock-out animal models have a single gene perturbation. The disease phenotype of these genetic
models often differs from the full phenotype of the human disease; the phenotype is often milder or even absent in
some cases. However, of note, the number of available genetic animal models is approximately of the same order of the
estimated number of genes responsible for the human disease, except for type II diabetes. Moreover, in some instances
(such as Type 1 diabetes and nephrotic syndrome), a systematic report of the available animal models is not available,
although the knockout mouse for each risk gene is available. Furthermore, a unique opportunity of a disease- or even
patient-specific validation of a molecular network identified in silico is offered by patient-derived xenografts (PDXs) or
avatars (Ben-David et al., 2017), which are based on cancer cells isolated from patients and injected into “nude” mice
(mice without an immune system): These are an improved, individualized reproduction of the disease into animal
models (though with several limitations; Willyard, 2018).

In animal models, the effect of single-gene perturbations on molecular networks is then usually studied using Omics
(e.g., proteomics, transcriptomics) analysis on relevant tissues. Strategies of gene-enrichment analysis or other tech-
niques detailed above can be used to infer the disease network (how a molecular perturbation in a molecular network
produces a specific phenotype). This information not only validates molecular networks inferred in patients but also
gives a detailed view of which cells/tissues are most affected by the network perturbation and even tissue-by-tissue dif-
ferences in molecular networks.

5.2 | Cell-based approaches

In vitro cellular models most commonly used experimentally to validate network relationships inferred from Omics
data include immortalized cell lines or primary cells isolated from different human tissues, stem cells, and induced plu-
ripotent stem cells (iPS). Computational identification of hub genes that affect multiple molecular pathways in PPI and
RNA–RNA interaction (RRI) networks necessitates functional validation to confirm biological mechanisms and suggest

TABLE 2 Comparison of estimated genetic determinants for human complex diseases and available animal models for molecular

network validation in those diseases

Animal model validation of molecular networks

Disease
Estimated number of genetic subgroups
according to GWAS or DNA sequencing

Number of available gene-targeted animal models of the
disease (including transgenic, Knock-out, and Knock-in
animals)

ADHD 15 (Faraone & Larsson, 2019; Gizer, Ficks, &
Waldman, 2009)

54 (D. Viggiano, 2008)

Anxiety/
depression

80 (Ormel, Hartman, & Snieder, 2019) 33 (A. Viggiano, Cacciola, Widmer, & Viggiano, 2015)

Memory
impairment/
dementia

30 (Nacmias, Bagnoli, Piaceri, & Sorbi, 2018) 35 (De Sanctis, Bellenchi, & Viggiano, 2018)

Diabetes
mellitus type
2

143 (Xue et al., 2018) 11 (Kadowaki, 2000; Plum, Wunderlich, Baudler, Krone, &
Bruning, 2005)

Diabetes
mellitus type
1

39 (Alkorta-Aranburu et al., 2014) Unknown

Nephrotic
syndrome

37 (Sen et al., 2017) Unknown

Obesity 52 (Kleinendorst et al., 2018) 20 (Kanasaki & Koya, 2011; Lutz & Woods, 2012)

Cancer Variable according to the cancer type Same number of cancer subtypes (patient-derived xenografts [PDXs]
or Avatars; Ben-David et al., 2017)
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potential druggable targets. Experimental laboratory validation usually occurs in two-dimensional (2D) monolayer cell
cultures. This unnatural system does not recapitulate the extracellular microenvironment in which the cells reside in
the body, due to the lack of extracellular matrix (ECM) and local and circulating factors (e.g., neurohormones), critical
components for physiological cell functions (Bonnans, Chou, & Werb, 2014). Consequently, failures of clinical trials,
especially in phase III, could be attributed to misleading experimental results obtained in 2D cell cultures. To reflect
more realistic and natural cell responses to any therapeutic treatment, three-dimensional (3D) cell culture systems have
been developed. Cells in a 3D culture may either grow as spheroids in suspension, as organoids surrounded by ECM, or
on scaffolds, as described in Table 3 (Abbott, 2003; Edmondson, Broglie, Adcock, & Yang, 2014; Muthuswamy, 2017).
Organoids, arguably used interchangeably with spheroids, are a self-organized cell system that develop into 3D organ-
like units that resemble the function and structure of an organ (Muthuswamy, 2017). Therefore, organoid cultures
established from patients are used for personalized reliable drug screening and for studying gene function, offering new
therapeutic approaches in the field of personalized medicine. More dynamic types of cell cultures are Organ-on-chip
(OOC) or Organ-Chips, a multi-channel 3D microfluidic cell culture chip made with silicone rubber polymer, which
simulates the activities, mechanics, and physiological responses of entire organs and organ systems (Huh, Hamilton, &
Ingber, 2011). Unlike conventional cell culture plates, microfluidic devices have been developed to mimic entire organs
and to recapitulate cellular interactions within a tissue unit by creating separate parenchymal and vascular com-
partments, therefore providing a more physiological microenvironment. Furthermore, in these devices a smaller
culture volume is needed, providing a greater concentration of cell-secreted growth factors as compared with
96-well plates (Przybyla & Voldman, 2012). Cells might be also seeded and grown on functionalized scaffolds
made of synthetic biomaterials, such as polysaccharides, that are nontoxic, biocompatible, and biodegradable to
achieve better cellular adhesion, differentiation, and proliferation able to form functional 3D human tissues for
medical applications. Scaffolds mimic the extracellular matrix that sustains cell growth and can better recapitulate
the microenvironment in which the cells are capable of exerting their physiological functions. Scaffold bioprinting
has many potential medical applications, from organoids to human tissue fabrication for modeling pathobiology,
drug development, and reconstitution and transplantation of damaged tissues and ultimately entire organs (Tissue-
engineered disease models, 2018).

Integration of predictive molecular networks with empirical data derived from 3D culture systems could become a
powerful approach for precision medicine. As mentioned above, 3D bioengineered models from patient-derived cells
are geared toward more physiologic behavior that considers not only cell–cell but also cell–microenvironmental interac-
tions. Molecular perturbations of these culture systems could be assessed for changes in gene expression, RNA–RNA
interactions, or protein–protein interactions. However, application of Omics data in these 3D culture systems remains
challenging. This challenge is mostly due to the complexity of nonlinear biological systems, characterized by common
nodes (proteins or RNA) working in concert with other nodes in a network, thus affecting multiple molecular
pathways. Perturbation of a single node by a drug or siRNA, short hairpin RNA (shRNA), CRISPR/Cas9, or any other
RNA-based compound might influence multiple molecular network members and create feedback loop processes. This
complexity derives not only from the number of genes and molecular pathways, but also from responses over time after
in vitro or in vivo treatment; that is, with the aforementioned compounds. Moreover, a therapeutic treatment of an ani-
mal or 3D cellular model could be efficient and nontoxic at a certain range of a compound concentration; that is, lower
concentrations might be less toxic than high doses of a therapeutic compound. Another characteristic of in vitro cell-
based biological systems is their adaptability to any therapeutic treatment that might induce drug resistance. We also
need to verify whether organotypic cultures manifest the emergent properties of disease/toxicity (Grego et al., 2017).
These and other challenges may lead to failure for validation of even the most powerful predictive molecular network.

The knowledge of molecular networks and especially causal network models combined with the experimental
observations in 3D cell cultures could become an integrated and more accurate approach to predict human responses
to any therapeutic treatment (Jaeger et al., 2014).

6 | DATA VISUALIZATION OF MOLECULAR NETWORKS

Network Medicine allows the mapping of diseases into the theoretical problems of graphs. The study of networks
requires a large amount of data to be analyzed and computed, in terms of properties of various nodes and relations exis-
ting among nodes and dynamicity related to the state of the network. Therefore, in addition to automatic analysis tech-
niques (e.g., machine learning), it is possible to integrate this new approach with data visualization and visual analytics
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(Thomas & Cook, 2005), depicting networks so that it is possible to understand clearly the region of interest and analyze
the relationships between network layers (Marai, Pinaud, Buhler, Lex, & Morris, 2019).

Visual analytics is a field that has intersected in multiple ways with medical data analysis (Chittaro, 2001;
Shneiderman, Plaisant, & Hesse, 2013). With the birth of Network Medicine, several contributions have been proposed.
They are focused on visualization of the molecular interactome (Chaurasia et al., 2009; Lu et al., 2004), disease modules
and gene pathways (Cerami, Demir, Schultz, Taylor, & Sander, 2010; Mlecnik et al., 2005), and phenotypes (Bottomly,
McWeeney, & Wilmot, 2016). Most of these approaches represent results using the node–edge diagram (Gladilin, 2017;
Sharma et al., 2015), but generally, they have very basic visual interactions. Moreover, general-purpose frameworks

TABLE 3 Main characteristics of cell-based approaches that are used for validation of molecular networks

Cell-based approaches

In vitro
cell
models

• Immortalized cell lines
• Primary cells isolated from different human tissues
• Stem cells
• Induced pluripotent stem cells (iPS)

Types of cell culture systems

2D Cells are grown in a polystyrene rigid plastic surface (petri dishes, flasks)

3D Cells are growing as spheroids, in suspension, or organoids surrounded by ECM, or on scaffolds

3D cell culture systems

Spheroids Liquid overlay culture (LOC) Hanging drop Microtechnology Bioreactor

Spheroids are placed on a thin
layer of matrix composed by a
mixture of matrigel with
specific growth factors
depending on the cell type.

Formation of
spheroids in a
small volume of
cell suspension
as a droplet.

Cell suspension is placed on
20–500 μm microchambers
with various shapes:
honeycomb, round, or
square (Karp et al., 2007)

Dynamic cell culture condition
created by continuous
stirring in appropriate glass
containers for massive
spheroid production (Ou &
Hosseinkhani, 2014)

Organoids Examples of organoids and use:
• Human epithelial cells, breast cancer cells, acini-like structures that secreted milk proteins (Emerman, Enami,

Pitelka, & Nandi, 1977)
• Exocrine pancreas cells used as a platform to study pancreatitis and pancreatic cancer (Huang et al., 2015)
• Human derived organoids can be altered genetically, by the genome editing CRISPR/Cas9 technology, to study the role

of genes in molecular pathways of interest (Fujii, Matano, Nanki, & Sato, 2015)

Organ-
chips

• Human breathing lung alveolus chip, blood–brain barrier, kidney, skin, placenta, intestine, and so on (Huh et al., 2010;
Kasendra et al., 2018; Sances et al., 2018)

Scaffolds Mineral Polymeric custom
shapes hydrogel

De-cellularized tissues and
organs

3D bioprinting

Use for bone, dental,
craniofacial and axon
regeneration:

- Calcium phosphates
composite scaffolds

- Graphene-based
nanocomposites

Use for
reconstruction
of bone,
cartilage,
muscle tissues:

- Biodegradable/
bioabsorbable
synthetic
polymers (PCL,
PLA, PEG)

- Biopolymers
(collagen,
gelatin,
hyaluronic acid,
chitosan)

Use for engineering blood
vessels and vascularized
tissues grafts:

- Urinary bladder
- Vagina
- Liver
- Heart valves
- Tendons

Use to create tissue/organ by
three bio-printing
techniques:

- Inkjet
- Laser-assisted
- Extrusion

Abbreviations: PCL, poly-e-caprolactone; PEG: polyethylene glycol; PLA, polylactic acid.
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exist, in the form of environments or libraries, that allow visualization of large biological networks like Cytoscape
(Smoot, Ono, Ruscheinski, Wang, & Ideker, 2011), NetBioV (Tripathi, Dehmer, & Emmert-Streib, 2014), or HitWalker
2 (Bottomly et al., 2016). Gerasch et al. (2014) proposed a system for visually analyzing high-throughput Omics data in
the context of networks; in particular, for differential analysis between groups of subjects and the analysis of time series
data. Perer and Sun (2012) and Basole et al. (2015) proposed visual analytics solutions that analyze data from clinical
patients, where the network reconstructs the time-evolving data of the clinical patient. In addition, Auriemma Citarella
et al. (2019) analyzed the symptoms of the patients and the general information of the disease using information
retrieval. However, they analyzed only the patients’ data, without correlating them to the interactome. In this research,
the symptoms of the patients can be considered as a layer in a multilayer network to have a more precise analysis. The
work by Huan, Sivachenko, Harrison, and Chen (2008) presents PRoteoLEns, a JAVA-based visual analytics tool for
creating, annotating, and exploring multi-scale biological networks. Nonetheless, the tool seems very proficient in
exploring subparts of a biological network, but is not as effective in communicating a network overview. An improve-
ment toward the analytics in the multilayer structure is represented by NEMESIS (Angelini, Blasilli, Farina, Lenti, &
Santucci, 2019), inspired by the work of Dietzsch, Heinrich, Nieselt, and Bartz (2009). NEMESIS is a visual analytics
solution that provides the means for exploring interactively different facets of a complex body of data, inspecting both
the data associated with topological properties of a single network and summary multidimensional information derived
from other relevant networks.

It is possible to model Network Medicine data as a multi-layer network, where each network (e.g., protein–protein
interaction networks (Rolland et al., 2014), metabolic networks (Ravasz, Somera, Mongru, Oltvai, & Barabasi, 2002),
human disease networks (HDN; K. I. Goh et al., 2007), metabolic disease networks (MDN; Braun, Rietman, &
Vidal, 2008), and drug-target networks (DTN; Yildirim, Goh, Cusick, Barabasi, & Vidal, 2007)) is a different layer. As
explained by Kivela et al. (2014), a multilayer network has a set of nodes just like a typical network, but in addition,
there are layers. Each connection is not a pair of nodes; instead, it is a tuple of node-layers. The difficulties in under-
standing these connections are related to the multiple points of view that this structure generates; in fact, the elements
can be analyzed at the intra-layer level (effectively focusing on a single homogeneous network) or at the inter-layer
level. In this structure, layers and their connectivity have major roles; in fact, each layer must be chosen for its useful-
ness and importance with respect to the problems being studied. Network Medicine seems the perfect domain where
modeling the various elements at hand as a multi-layer network can provide enriched analysis and benefits, although
with additional complexity to manage.

From a visualization perspective, it is important to look for appropriate visual representations apart from the classic
node–edge diagram, adjacency matrix (Ghoniem, Fekete, & Castagliola, 2005), or chord diagram (Crnovrsanin,
Muelder, Faris, Felmlee, & Ma, 2014), or using a hybrid approach (matrix and node–edge; Henry, Fekete, &
McGuffin, 2007). These representations should be able to provide scalability with respect to data size and should be able
to support the analyst providing an explorable overview. The analyst must be supported by tools to examine interactions
within a single layer of the multi-layer network and eventually explore the connection to other layers. In this sense, it
becomes important to design navigation patterns through different visual representations, automatically selecting the
best one for the specific task at hand (e.g., exploration of the network, communication between different types of evi-
dence, or analysis of a subset of elements). Transitions between abstract visual paradigms (e.g., node–edge representa-
tion, adjacency matrix representation, and novel visual paradigms) should be managed while keeping the user
selection, allowing rearrangement of the layout of the multi-layer network depending on the kind of analysis executed.
Where the complexity of the analysis again becomes manageable, the visualization can transition back to node–edge
diagrams that are more readable for a low number of elements with respect to other abstract visual representations.
Proposals on this topic are the automation of the change of visualizations with respect to granularity of the focus level
(Landesberger et al., 2011; e.g., from matrix to node–edge) or detail to overview via selections and aggregations (DOSA;
van den Elzen & van Wijk, 2014).

Among several visualization tasks to be supported, we can envision consolidating network data (e.g., interactome
data), given the different sources that provide these data. Homogenization of data is necessary to perform deep studies
aimed at uncovering new edges in single networks (e.g., protein–protein network) or among the networks (e.g., drugs–
patients). Identification of interesting areas of the multi-layer network, such as highly connected nodes (hubs), may
indicate certain properties that are present or are of specific interest (e.g., disease modules). Studying the connectivity
in the multi-layer network, it is possible to identify regularities that could provide biological insights, but also to man-
age visually the complexity of the multi-layer network layout. On this topic, interesting visual approaches include the
gragnostics (Gove, 2019) approach proposing several metrics for network similarity (e.g., to recognize similarities
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between the different layers and finding new patterns) and methodologies for pruning uninteresting elements from the
network, allowing more scalable visual representations (Auber, 2004; Singh, 2007).

Eventually, these elements can even be used to model new layers of the multi-layer network, using them for fast fil-
tering activities or pattern-matching based on machine learning techniques. Another interesting aspect is the network
neighborhood; nearby nodes are often associated with the same phenomena. Genes that belong to the same disease are
often arranged in a local neighborhood, so it is possible to find similar patterns in the proximity of a selected gene. Clus-
tering approaches can be used to delineate these regions of interest.

The link between the fields of visualization, visual analytics, and Network Medicine (summarized in Figure 5) can
bring mutual improvements for different types of users: Physicians and medical personnel, as well as bioinformatics
and visualization researchers and practitioners. Physicians and other medical personnel, provided with interpretable
results coming from powerful automatic analysis methods, can form, test, and validate new hypotheses, eventually tak-
ing into account multiple relationships derived from the interconnected nature of a multilayer network. This effort can
help to understand better a current disease under examination, test new drugs, and evaluate their effectiveness on
patients, all in the same holistic and interconnected view, where visualization allows an investigator to steer the analy-
sis and interpret and communicate the results.

Despite the heavy computational cost of many of these data analysis techniques, network visualization approaches
can help in conducting data exploration, fine-tuning and optimizing specific algorithms, and testing and comparing
new automatic analysis techniques. Finally, for visualization researchers and practitioners, the requirements of Net-
work Medicine can help in designing and testing new abstract visual paradigms, tailor interaction approaches to sup-
port exploration better, and investigate smoother transition techniques between views for exploration, analysis,
communication, and interpretation of results, eventually advancing the state-of-the-art in the field of networks, and in
particular multilayer network, representation.
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FIGURE 5 The visual analytics cycle applied to Network Medicine. Data from different domains (e.g., cellular, molecular, and genetic

networks) are input to two different processes, visual data exploration which exploits visualization paradigms (Node-Edge, Matrix, Chords,
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algorithms, etc.). These two processes are interconnected, allowing an analyst to steer algorithms by interacting with the visual

representation of results. The whole process generates new insights (e.g., relationships among networks) used as a feedback loop for new

cycles of analysis
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7 | SUCCESSFUL APPLICATIONS OF MOLECULAR NETWORKS

Application of potent network-based algorithms represents the most fruitful way to reach useful clinical platforms for
precision medicine and personalized therapy in complex diseases (Barabasi, 2007; Barabasi et al., 2011;
Benincasa, Marfella, Della Mura, Schiano, & Napoli, 2020, Infante et al., 2020; Menche et al., 2015). In this section, we
will review several examples in which the application of network-based methods has provided pathobiological insights
into conventionally defined complex diseases. In the future, Network Medicine has the potential to redefine diseases
based on the molecular networks that determine their pathobiological mechanisms, instead of the conventional
approach of disease diagnosis based on physiology and/or pathology.

7.1 | Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) leads to fibrotic vasculopathy and endothelial dysfunction underlying heart
remodeling (Chan & Loscalzo, 2008). Combining network-based algorithms and modeling of epigenetic trajectories over
time may be crucial to discover novel clinical biomarkers leading to precision medicine of PAH (Napoli, Benincasa, &
Loscalzo, 2019). Samokhin et al. (2018) have mapped fibrosis-related proteins to the human interactome and, by using
the betweenness centrality (BC) analysis, revealed that the SMAD3 target neural precursor cell expressed developmen-
tally down-regulated 9 (NEDD9) is a critical hyperaldosteronism-regulated node triggering the shift from an adaptive to
maladaptive fibrotic response. Interestingly, NEDD9 reduction prevented fibrotic vascular remodeling in vivo, thus
suggesting a putative novel drug target.

7.2 | Coronary heart disease

An integrated approach combining imaging modalities in the quantification of coronary atherosclerosis and novel cir-
culating biomarkers could improve precision medicine of coronary heart disease (CHD; Infante et al., 2017). By provid-
ing additional linking proteins (seed connectors) to the seed protein pool, the Seed Connector algorithm (SCA)
identified novel putative drug targets in CHD, such as the neuropilin-1 (NRP1) protein (R. S. Wang & Loscalzo, 2018).
Furthermore, a systems pharmacology-based platform measuring the distance between disease proteins and drug tar-
gets in the human PPI was developed (Cheng et al., 2018). Evidence from large-scale patient datasets indicated that car-
bamazepine and hydroxychloroquine were strongly associated with a higher and lower risk of CHD onset, respectively.
Importantly, in silico applications may serve as useful tools for efficient screening of potentially new indications for
approved drugs (drug repurposing), undesirable side effects, as well as potential mechanisms of drug action, thus
enlarging opportunities for personalized therapy (Cheng et al., 2018; R. S. Wang & Loscalzo, 2018).

7.3 | Diabetes mellitus

Sharma et al. (2018) performed a robust network-based controllability approach to construct a regulatory subnetwork
in human pancreatic samples. By applying the control centrality (Cc) concept to identify high control centrality (HiCc)
pathways, an enrichment of variants regulating gene expression (eQTL) was observed. Interestingly, the nuclear factor
of activated T cells 4 (NFATC4) belonged to four HiCc pathways and may increase the expression of four putative
downstream T2D genes, thereby implicating a potentially crucial node contributing to disease pathogenesis (Sharma
et al., 2018).

7.4 | Complex lung diseases: Chronic obstructive pulmonary disease, idiopathic
pulmonary fibrosis, and asthma

Recently, a PPI network-based approach unveiled molecular network neighborhoods for chronic obstructive pulmonary
disease (COPD) and idiopathic pulmonary fibrosis (IPF), with a statistically significant region of intersection and net-
work proximity (Halu et al., 2019). The shared network region involved 19 genes, including Rho GTPase activating
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protein 12 (ARHGAP12) and butyrylcholinesterase (BCHE) as key nodes. Thus, network-based strategies may also offer
a potent means to dissect genes and pathways shared between phenotypically distinct diseases, such as COPD and IPF,
thus offering novel insights into pathobiological mechanisms (Halu et al., 2019). In earlier work, by mapping the seed
genes onto the human interactome via the DIAMOnD algorithm (Ghiassian et al., 2015), an asthma-associated network
neighborhood was identified (Sharma et al., 2015). Interestingly, the asthma network module was strongly associated
with two clinical phenotypes, asthma severity and poor asthma control, thus providing evidence for its putative impor-
tance in asthma pathogenesis, as well as in future precision medicine.

7.5 | Redefinition of sGC as a primarily neuronal target

Clinically relevant molecular targets are often associated with only one or a few disease indications or medical
specialties. This, however, may be solely because other disease areas or indications were never considered.
Langhauser et al. (2018) investigated such a potential bias in a high prevalence unmet medical need cluster of dis-
ease phenotypes linked to cyclic GMP. Hitherto, the central cGMP-forming enzyme, soluble guanylate cyclase
(sGC), had been targeted pharmacologically exclusively for smooth muscle modulation in cardiology (angina
pectoris, heart failure, coronary heart disease) and pulmonology (PAH). The disease associations of sGC were re-
investigated in a nonhypothesis based manner to identify possibly previously unrecognized clinical indications by
determining the protein–protein interactome-based proximity of the proteins within the sGC complex to the pro-
teins associated with major common diseases (Guney, Menche, Vidal, & Barabasi, 2016). To prioritize the diseases,
four diseasomes were assessed based on disease–disease relationship scores. Only those links that correspond to
nonspurious relationships between diseases were kept by including disease pairs that shared at least one gene
(n > 0); had a positive shared protein interaction score (z > 0); showed symptom similarity (Jaccard index >0.5);
and were known to be comorbid (relative risk >1) in the four diseasomes, respectively. The degree centrality of
each disease within these diseasomes was calculated and then an average final centrality value was determined.
To ensure that the incompleteness of the interactome data did not have a significant effect on the ranking of the
diseases, the centrality of the diseases without using the interactome-based diseasome was also checked. Stroke
remained as the most central disease across the diseasomes, an application that has so far not been explored clini-
cally. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need,
ischemic stroke, preclinically sGC activity was virtually absent post-stroke. Conversely, a heme-free form of sGC,
apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this
repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly
neuroprotective, reduced cerebral infarct size and increased survival. Thus, common mechanism clusters of the
diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a
mechanism-based manner.

7.6 | Co-target discovery for network pharmacology

Drug discovery mainly focuses on single molecular targets. Mechanism-based disease definitions would, however,
frequently be networks targeted by multiple compound synergy and network pharmacology. Beginning with a pri-
mary causal target, Casas et al. (2019) extended a validated seed protein to a second protein using guilt-by-
association analysis and then validated the prediction and synergy using both cellular in vitro and in vivo models.
As a disease model, they chose ischemic stroke, and reactive oxygen species forming NADPH oxidase type
4 (Nox4) as a primary causal therapeutic target. For network analysis, they used classical PPIs but also
metabolite-dependent interactions, assuming that signaling events may occur in a non-PPI manner. Based on this
protein–metabolite network, they conducted a gene ontology-based semantic similarity ranking to find suitable
synergistic co-targets for network pharmacology. They then identified the nitric oxide synthase (Nos) gene family
as the closest target to Nox4. Indeed, when combining a NOS and a NOX inhibitor at subthreshold concentra-
tions, they observed pharmacological synergy in a supra-additive manner suggesting a causal network comprised
of Nox4 and Nos signaling. Thus, protein–metabolite network analysis can predict and pair synergistic mechanistic
disease targets for network pharmacology, an approach that may reduce the risk of failure and increase the effi-
cacy of single-target drug discovery and therapy approaches.
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7.7 | Drug networks

Drug-based networks (for which we propose the term “drugome”) may be especially relevant for translational Network
Medicine and network validation. These networks include pluripotent drugs (effective in more than one disease) or pro-
miscuous drugs (having more than one binding target). Both drug interactions and resulting drug networks offer the
possibility of discovering drug repurposing opportunities for clinical validation. Hu and Agarwal (2009) performed a
systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease–drug
network. A network of 170,027 significant interactions was extracted from comparisons between publicly available
transcriptomic profiles. The network included primarily disease–drug and drug–drug relationships. Among the disease–
drug links, connections with negative scores suggested new indications for existing drugs, while positive scoring con-
nections may aid in drug side effect identification. Drug–drug relationships may aid in target and pathway
deconvolution. The relevance of drug–drug networks is further enhanced by the recent observation of the detection of
molecular interaction field similarities which provide further opportunities for drug repurposing as well as to identify
potential molecular mechanisms responsible for side-effects. Chartier, Morency, Zylber, and Najmanovich (2017) per-
formed a large-scale analysis to detect binding-site molecular interaction field similarities between the binding-sites of
the primary target of registered drugs against a nonredundant dataset of all proteins with known structure. They found
140 unique drugs and 1,216 unique potential cross-reactivity protein targets. This expands the potential for drug
repurposing for small molecules from the orthologous target to several so-called “off-targets.”

7.8 | Future network medicine applications

Network Medicine may effectively overcome the limitations of the current reductionist approach to medical research
by using a “deep phenotyping” strategy that combines heterogeneous Big Data and clinical information, lifestyle, and
nutritional habits to provide a map of the aberrant signaling pathways interlinked with each other layer of knowledge
at the individual level. Epigenetic-sensitive changes represent a bridge between genome and environment during early-
life development, providing novel insights into the “epigenetic transgenerational effect” hypothesis, a topic that
deserves further investigation in humans (Benincasa et al., 2019; Napoli et al., 2012; Napoli et al., 2019). The above-
mentioned network-oriented biomarkers could be useful to prevent, diagnose, and monitor complex diseases as well as
to offer novel drug targets providing the opportunity of repurposing previously approved drugs for other diseases
(Cheng et al., 2018). Moreover, Sanchez-Vega et al. (2018) emphasized the possibility that the high intra- and inter-
individual heterogeneity of a specific type of cancer could be dissected by the underlying pathway abnormalities leading
to a molecular-based diagnostic platform that could be more effective than traditional approaches. Long-term clinical
trials are needed to validate these molecular networks and machine learning predictive models, providing a huge
opportunity for precision medicine and personalized therapy of complex diseases. Importantly, Network Medicine is
now focusing on the ongoing “Foodome” project (https://www.barabasilab.com/projects) based on the relationship
between specific food (bio)chemicals and consumption behaviors, linking this to health and disease outcomes. In the
future, these efforts may unveil crucial information about the relationships between epigenetic sensors and lifestyle/
nutritional habits as one of the most important risk factors for diabetes, cardiovascular diseases, and cancer. These
advances in Network Medicine have the potential to lead to important clinical applications (Figure 6) with more per-
sonalized and effective treatments.

8 | CONCLUSION: KNOWLEDGE GAPS AND KEY RESEARCH DIRECTIONS

Although Network Medicine studies have already led to substantial progress, there are important knowledge gaps that
have limited the impact of network-based analysis on clinical practice. We will review some of these key limitations
and suggest future directions for Network Medicine research.

8.1 | Incompleteness of the molecular interactome

Notwithstanding huge advances in systematic protein–protein interaction mapping technologies (Y2H- or MS-based;
Luck, Sheynkman, Zhang, & Vidal, 2017; Rolland et al., 2014; Smits & Vermeulen, 2016), it is estimated that the cover-
age of the human molecular interactome accounts for only about 20% of all potential pairwise interactions (Menche

SILVERMAN ET AL. 23 of 38

https://www.barabasilab.com/projects


et al., 2015). Since many Network Medicine approaches are based on the topology of the molecular interactome
(e.g., disease modules, connectivity patterns, centrality measures, etc.), interactome incompleteness is undeniably a hur-
dle. Attempts have been carried out to evaluate the impact of such incompleteness, leading to hypotheses that disease
modules linked to <25 disease genes are likely to be fragmented and are difficult to detect in the current molecular
interactome model (Menche et al., 2015). In such a landscape, computational predictive mapping approaches can come
to the rescue and complement experimental high-throughput methods, providing reliable de novo PPI detection
(Kotlyar, Rossos, & Jurisica, 2017). These approaches are based on genomic or functional data (Gandhi et al., 2006;
X. Wang & Jin, 2017), on protein structure and dynamics (often coupled with machine learning techniques;
Ehrenberger, Cantley, & Yaffe, 2015; Q. C. Zhang et al., 2012), or on techniques derived from social links inference
methods, for example, based on the triad closure principle (TCP; Bianconi, Darst, Iacovacci, & Fortunato, 2014), or on
paths of length three (L3; Kovacs et al., 2019).

It is also worth mentioning the need to go beyond pairwise interactions, for example, by probing multi-protein inter-
actions, to predict the behavior of larger protein complexes, operative scaffolds on which most cellular processes rely
(Hur, Chen, & Mueller, 2016), as well as the attempts to characterize the so-called “negatome”, that is, the set of pro-
teins that are unlikely to engage in physical interactions. The negatome is potentially useful for training PPI predictive
algorithms and for assessing the false-positive rates of PPI detection attempts (Mao et al., 2014). Although the limita-
tions of interactome incompleteness are problematic for protein–protein interaction networks, all network methods that
rely on databases of molecular connections (e.g., transcription factor binding sites) will be susceptible to false-negative
network connections due to incomplete mapping of molecular relationships and false-positive network connections due
to technical artifacts. For example, protein metabolites (substrates and products) are often missing in metabolite data-
bases. Casas et al. (2019) needed to include hydrogen peroxide as a metabolite of NOX to implicate NOS in ischemic
stroke pathogenesis.

8.2 | Uncertainty about key genes in genetic association loci

Although GWAS have identified thousands of associations between genetic variants and complex diseases that with-
stand stringent adjustments for multiple statistical testing, the functional variants within those GWAS loci and the
genes that they influence are known in only a small minority of GWAS regions (Silverman, 2018). Most complex dis-
ease genetic variants are located in noncoding regions, and they often do not regulate the nearest gene (Baranski
et al., 2018). These uncertainties limit the accuracy of selection of GWAS “seed” genes for protein–protein interaction
network studies. Moreover, since GWAS evidence has been used to support findings from other types of molecular net-
works (e.g., correlation, gene regulatory), the application of GWAS results in these contexts is also limited by the lack
of functional dissection of GWAS statistical associations. Thus, although GWAS can provide reasonably comprehensive
assessments of the common genetic variants influencing a complex disease, applying these results to molecular network
studies remains challenging. Finding functional variants and the genes that they influence within GWAS loci are active
areas of research (Musunuru et al., 2018).

FIGURE 6 The Network Medicine approach and its

putative clinical applications. The main goal of Network

Medicine is to provide holistic, network-based approaches for

disease classification and drug target selection. This molecular–
bioinformatics approach has the potential to improve both the

quality of care and the quality of life of patients affected by

complex diseases
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8.3 | Limited application to human samples and diseases: The gap between systems
biology and network medicine

There still are many hurdles to the successful and profitable deployment of Network Medicine approaches in the clinical
context. Some of these bottlenecks and gridlocks include: (a) the strong focus on smaller biological systems typical of Sys-
tems Biology studies, which is often difficult to scale to the organism-level required in clinical practice, owing to the inher-
ent limits of the conclusions to the specific experimental/biological context (e.g., signaling pathways, gene regulatory
networks in cellular processes such as differentiation, etc.); (b) a large number of scientific hypotheses can be generated via
network biology and Network Medicine methods, with a parallel need for robust testing and solid validation, that is, basic
needs in the clinical context; (c) the difficulties in gathering supporting, coherent, and secured data in clinical settings; and
(d) the nature and the structure of clinical and medical data, with their own complexity, schemas, ontologies, and access
restrictions, and the necessity to link them unequivocally with clinical samples. From this perspective, meta-analyses can
have the capability to increase statistical power and generalizability of single-study analysis (B. Chen & Butte, 2013; Wol-
kenhauer, Auffray, Jaster, Steinhoff, & Dammann, 2013; Wolkenhauer et al., 2009). Comparing different networks is a chal-
lenging task when nodes can differ between networks (recently reviewed by Tantardini, Ieva, Tajoli, and Piccardi (2019)),
which can be addressed with approaches based on graphlets, spectral methods, and portrait divergence.

A complete validation process should eventually lead to the enactment of qualified, standardized, partially auto-
mated protocols and workflows, able and tailored to work in highly dynamical clinical settings. Furthermore, often
neglected, key points reside in the fact that models and findings should not be byzantine from a clinical perspective
(see also considerations about “black boxes” in the next paragraph), as well as in the structure of the healthcare system,
that will be required to adapt drastically to operate with multidisciplinary teams, working with multi-omics data, large-
scale data storage facilities, standard analytical pipelines, and specific managerial frameworks. All of these processes
demand specific education and complementary formations for hospital personnel in the context of larger training pro-
grams (Hood, 2013; Noell, Faner, & Agusti, 2018).

8.4 | Potential impact of new molecular and computational methodologies on network
medicine

The development of CRISPR technology has literally transfigured the capability of genome editing and has opened
unique scenarios to analyze pathways and biological networks at the level of single-nucleotide specificity (Jinek
et al., 2012). To demonstrate the impact that new molecular technologies can exert on network biology and Network
Medicine, Li, Nowak, Withers, Pertsemlidis, and Bleris (2018) used CRISPR for outlining the role of network edges
compared to that of nodes; they targeted a number of miRNA sites in 71 genes involved in the p53 pathway, ablating
numerous edges and thus demonstrating their essentiality for the pathway function and stability. From this perspective,
CRISPR editing in biological network analysis seems to provide a finer resolution tool compared to more disruptive
node removal techniques, potentially leading to the identification of previously hidden interactions and more opportu-
nities for therapeutic intervention.

Advanced analytical approaches, such as machine learning (ML) and deep neural networks (DNNs), are becoming
a powerful and essential phase of modern biology and medical investigative workflows. Several successful applications
have already been enumerated, such as achievements in the predictions of protein binding interactions, in inferring
gene regulatory networks, in predicting metabolic functions, in genome annotation, and in the discovery of key tran-
scriptional regulators involved in cancer, among other diseases (Sonawane, Weiss, Glass, & Sharma, 2019). Notwith-
standing the many successes and the new opportunities offered, there remain daunting challenges to be faced,
including the insatiable hunger for data of ML and DNN algorithms, for which, paradoxically, even the current biologi-
cal data deluge is insufficient. Options to engage with such challenges with a focus on medicine and public health
include the provision, availability and exploitation of larger, curated, formatted and open multi-omic datasets combined
with robust, standardized, and curated clinical phenotypic data (Mooney & Pejaver, 2018; Vanschoren, van Rijn,
Bischl, & Torgo, 2013); and, from the algorithmic side, the commitment in the development of new ML approaches able
to deal with smaller datasets, which are already in progress in fields other than biology and medicine (Y. Zhang &
Ling, 2018). The use of simulated data displaying the same attributes of experimental data—as already largely
implemented in the setup of GWAS analysis tools (Dudek, Motsinger, Velez, Williams, & Ritchie, 2006)—is also viable,
for example through the exploitation of the recent generative adversarial networks (GANs), a DNN architecture
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employing two neural networks that compete one against the other, one generating data that simulate the training
(real) dataset (the generator), and the other recognizing if the simulated data belong to the training set (the adversary),
until the “conflict” is resolved by simulating data that are indistinguishable from the real data (Ghasedi Dizaji, Wang, &
Huang, 2018).

Finally, it is important to mention the fact that many advanced ML approaches work as “black boxes,” hiding the
importance and the correlation of a set of features from the outcome (i.e., its biological interpretation), thus hindering
the deployment of predictive models because ultimately, humans do not understand—nor trust—them (Camacho, Col-
lins, Powers, Costello, & Collins, 2018). To overcome this issue, several efforts are being pursued in providing interpret-
able ML approaches able to balance interpretability, accuracy, and computational viability (Lakkaraju, Bach, &
Leskovec, 2016; M. K. Yu et al., 2018).
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