

Danube Symposium Vienna, September 21/22nd, 2023

Molecular Imaging and **Total-Body PET:** The Basics Simon R. Cherry Departments of Biomedical Engineering

and Radiology, UC Davis

Positron Emission Tomography

Positron Emission Tomography A Beautiful Piece of Physics

Positron-Emitting Radionuclides

Isotope	Halflife	β^+ fraction	Max. Energy
C–11	20.4 mins	0.99	0.96 MeV
N–13	9.96 mins	1.00	1.20 MeV
O–15	123 secs	1.00	1.74 MeV
F–18	110 mins	0.97	0.63 MeV
Ga–68	68.3 mins	0.88	1.90 MeV
Rb-82	78 secs	0.96	3.15 MeV
Zr-89	3.3 days	0.22	0.90 MeV
I–124	4.18 days	0.22	3.16 MeV

and many others...

Radiolabeled Agents for PET Imaging

 Small molecules ______ ~1 nm - Substrates for enzymes, receptor ligands, drugs... Peptides Receptor targeted, enzyme substrates... ~1-5 nm Antibodies -- Full length, minibodies, diabodies ~10 x 2 nm Pathogens _____ ~20-200 nm – Viruses, bacteria... Particles – 20-100 nm - Liposomes, lipospheres, nanoparticles... Cells — - T-cells, stem cells... ~5-100 µm

PET Radiotracers

Physiology

Blood Flow H₂¹⁵O, ¹¹C-butanol Blood Volume ¹¹CO, ¹⁸F-human serum albumin (HSA)

Metabolism

Oxygen ¹⁵O₂ Glucose ¹⁸F-fluorodeoxygluose (FDG) Fatty Acid ¹¹C-palmitate

Receptor/Protein Binding

Dopamine ¹¹C-raclopride Prostate Specific Membrane Antigen (PSMA) e.g. ¹⁸F-piflufolastat CD8 (T-cells) e.g. ⁸⁹Zr-Df-Crefmirlimab Beta-amyloid e.g. ¹⁸F-florbetapir

PET is Highly Sensitive

- PET radiotracers are synthesized with molar activity as high as 100-1000 GBq/µmol
- Typical administrations of small molecules are in the range 2.5 – 25 nmol (0.1 – 10 μ g)
- PET is a tracer technique generally no pharmacological effect
- Biodistribution may change with mass level may want to add additional mass of cold compound

Luurtsema et al, EJNMMI Radiopharmacy and Chemistry 6; 34 (2021)

	nmc	
PET		µmol
MRI		mmol
СТ		mol

One Important Caveat – Metabolites!

- PET images the distribution of the **radioisotope**
- PET cannot distinguish radiolabeled metabolites from parent compound
- Important to know fate of radiotracer in the body over the imaging time
- Careful tracer design (native vs analog)
- May require metabolite correction/analysis to properly interpret images

Positron Emission Tomography

PET Scanner

Rings of scintillation detectors

Very dense material to effectively absorb 511 keV photons

Time of Flight PET

Time of Flight PET

 $\Delta x = \frac{c \ \Delta t}{2}$

Timing resolution $\Delta t = \sim 200 \text{ ps}$ $\Delta x = 3 \text{ cm}$

Time of flight information not sufficient to directly localize events

Image Reconstruction

Sophisticated iterative methods

List mode time-of-flight

Ordered subsets, expectation maximization (OSEM)

Point spread function (PSF) modeling may be applied

Post smoothing may be applied

The Spatial Resolution of PET is Limited

Whole-body imaging ~ 2 mm Brain imaging ~ 1 mm

Data Corrections

Detector efficiency

Accidental (random) events

System deadtime

Photon attenuation and scatter (using CT or MRI information)

Clinical Use of PET Scanning

Clinical Use (2016 figures):

5.76 million scans per year at ~5,700 sites in the world

Oncology: staging, response to therapy Cardiology: perfusion, viability Neurology: amyloid imaging in AD

PET/CT and PET/MR Scanners

Signal Collection in PET

- PET provides the most sensitive non-invasive molecular assay of the human body
 - All PET studies are limited by low signal, radiation dose, or both

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

Total-Body PET

CTotale Etioshyal PET RETSC anner **Opportunities:**

- All organs/tissues in field of view
- High geometric collection
 efficiency
- Leads to ~20-60 fold higher signal for whole-body imaging

uEXPLORER Scanner

Performance:

- 174 kcps/MBq sensitivity* (<20 kcps/MBq industry standard)
- 2.9 mm spatial resolution*
- 509 psecs time of flight
- 11.7% energy resolution *NEMA NU 2-2018 protocol

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

EXPLORER vs CMS EM Calorimeter

of crystals: 564,480# of photodetectors: 53,760# of electronic channels: 53,760Mass: ~11,000 kg

of crystals: 75,848# of photodetectors: 137,048# of electronic channels: 75,848Mass: ~100,000 kg

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

Capabilities of Total-Body PET

Total-Body and Long PET Scanners

United Imaging uEXPLORER (194 cm)

~3 mm spatial resolution total-body coverage ~500 ps time-of-flight

United Imaging Panorama GS (148 cm) ~200 ps time-of-flight

Siemens Vision Quadra (106 cm) ~220 ps time-of-flight

UCDAVIS
EXPLORER MOLECULAR
IMAGING CENTERTotal-Body PET:
A Scientific Measurement Instrument

Scanner Calibration/QC Normalization Attenuation Scatter Randoms Deadtime Background/Other γ's

Subject Motion Dietary Prep Time of Day Room Temperature Exercise, Stress

Thomas Beyer & Lalith Kumar Shiyam Sundar Medical University of Vienna

Modeling/Analysis

Motion Correction Segmentation, AI tools Biological Understanding TB Kinetic Modeling Connectomics

Challenge:

Need to be accurate and precise over 3-4 orders of magnitude!

EXPLORER MOLECULAR IMAGING CENTER

Challenge:

Distribution varies over time and with different tracers

EXPLORER MOLECULAR IMAGING CENTER

Challenge:

Subject volume can vary by > 10x

10 kg – 150 kg

Quantitative Accuracy and Precision

- PET measures radiotracer concentration (kBq/cc)
- Precision (# of counts)
- Accuracy (data corrections)
- How good is it? ~ 5-10%
 (ignoring biological variability)
- How good can it be?

EXPLORER MOLECULAR IMAGING CENTER

Challenge:

Motion occurs during scanning

Xuezhu Zhang, Eric Berg and Yasser Abdelhafez

Static vs Dynamic Imaging

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

Total-Body PET in Arthritis

Psoriatic Arthritis

Rheumatoid Arthritis

Osteoarthritis

Yasser Abdelhafez and Abhijit Chaudhari

Metrics from Static Scans

Standardized Uptake Value (SUV)

SUV (g/ml) = $\frac{C_{tissue}(kBq/ml)}{A(kBq) / w(g)}$

Sensitive to uptake time, tracer delivery, scanner/dose calibrator calibration etc. 10-15% variability in within-subject test-retest studies

Standardized Uptake Value Ratio (SUVR)

SUVR = SUV_{tissue}/SUV_{reference}

Total-Body Dynamic Imaging

Time-activity curves (TACs)

Total-Body Kinetic Modeling

$$\frac{dC_f}{dt} = K_1 C_p - (k_2 + k_3)C_f + k_4 C_m$$
$$\frac{dC_m}{dt} = k_3 C_f - k_4 C_m$$
$$f(t) = (1 - v_b)(C_f(t) + C_m(t)) + v_b$$

Guobao Wang, UC Davis

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER Parametric Ima

Parametric Imaging with ¹⁸F-FDG

SUV (g/ml)

Courtesy of Dr. Guobao Wang, UC Davis

Challenges and Limitations in Kinetic Modeling

 K_{i}

- Input function measures C_{wb} not C_p
- Model selection and special cases
 - Blood, liver, lungs etc...
- Correcting for metabolites
- Selecting appropriate model complexity
 - What can the data support?
 - Identifiability analysis
- Effects of motion

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

Image-Derived Input Function

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

Time delay and model selection maps

Yiran Wang, UC Davis

Kinetic model selection

OT model
1T model
2T model

Dual Blood Input Function - Lung EXPLORER MOLECULAR

Lung tumor TAC fitting

IMAGING CENTER

10 × 10⁴ 10 × 10⁴ measured TAC Activity (Bq/mL) measured TAC • Activity (Bq/mL) **RVIF** fitting **RVIF** fitting **RVIF** 5 5 0 0 20 40 60 80 100 0 20 0 40 60 80 100 Time (s) Time (s) 10 ×10⁴ 10 – ×10⁴ measured TAC Activity (Bq/mL) 0 measured TAC ۰ Activity (Bq/mL) **DBIF** fitting **DBIF** fittina DBIF 5 5 0 0 0 20 40 60 80 100 20 0 40 60 80 100 Time (s) Time (s)

Normal lung tissue TAC fitting

Total-Body Perfusion Imaging

Elizabeth Li, UC Davis/UPenn

1.0 2.0 3.0 4.0 *K₁* (mL·min⁻¹·cm⁻³)

0 *K*₁ (*ml*·*min*⁻¹·*cm*⁻³)

Targeted Imaging of CD8+ T cells

Crefmirlimab is a minibody with high affinity to **human CD8**

0.5 mCi (18 MBq) of ⁸⁹Zr-Df-Crefmirlimab-Berdoxam

Negar Omidvari, UC Davis

Control M, 25 y/o, BMI 21

24

Time (h)

36

Considerations in Study Design

- Radiotracer selection
- Subject selection
- Imaging protocol (static/dynamic)
- Reconstruction protocol
- Analysis methods

Function is Highly Variable

- Brain anatomy¹
 - Grey matter volume
 - Between-subject variability: 8.9%
- Brain function²
 - Cerebral perfusion
 - Between-subject variability: 16.2%
 - Within-subject variability: 4.8%
- 1. Nobis et al, Neuroimage 2019; 23: 101904
- 2. Henriksen et al, J Magn Reson Imaging 2012; 35: 1290-1299.

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

Acrosssubject Design

Control Group

Disease Group

Requires large numbers of subjects

UCDAVIS EXPLORER MOLECULAR IMAGING CENTER

Matched Acrosssubject Design

gender, age, BMI, ethnicity, etc...

Control Group

Disease Group

Reduce number of subjects Cohorts may be less diverse and representative EXPLORER MOLECULAR IMAGING CENTER

Withinsubject Design

Each subject serves as their own control

- PET is a highly sensitive technique that can quantitatively measure physiology, metabolism and molecular targets.
- Advanced total-body PET scanners enable radiotracer pharmacokinetics to be measured in the entire human body with good signal-tonoise ratio.
- Total-body PET offers new opportunities for studying the human body as a system in health and disease

